Internet of Things-Based Electromagnetic Compatibility Monitoring (IEMCM) Architecture for Biomedical Devices
Abstract
1. Introduction
2. Materials and Methods
2.1. Medical Devices
2.2. EM Signal Detection System Design
2.3. Embedded System Dataflow
| Algorithm 1: Convert Sensor Data |
| 1. Procedure CONVERTSENSORDATA(data_stream) |
| 2. data_stream = D15 D14 … D1 D0 |
| 3. Read data_stream |
| 4. decimal_point = D9 |
| 5. polarity = D10 |
| 6. unit = ‘V/m’ when (D11, D12) == (0, 1) |
| 7. display_type = ‘upper’ if D13 == 1 else ‘lower’ |
| 8. reading = D1 : D8 |
| 9. If decimal_point == 1 then |
| 10. reading = reading[:4] + ‘.’ + reading [4:] |
| 11. Else if decimal_point == 2 then |
| 12. reading = reading[:3] + ‘.’ + reading[3:] |
| 13. Else if decimal_point == 3 then |
| 14. reading = reading[:2] + ‘.’ + reading[2:] |
| 15. End if |
| 16. If polarity == 1 then |
| 17. reading = ‘-’ + reading |
| 18. End if |
| 19. Return reading, unit, display_type |
| 20. End procedure |
| Algorithm 2: EM Radiation Reading Process |
| 1. For each EM radiation reading, do: |
| 2. Check the device type: |
| 3. If device == critical then |
| 4. Set threshold = 10 V/m |
| 5. If EM radiation > 10 V/m, then |
| 6. Send SMS Notification |
| 7. Else |
| 8. Send data to the cloud |
| 9. End if |
| 10. Else if device == noncritical then |
| 11. Set threshold = 3 V/m |
| 12. If EM radiation > 3 V/m, then |
| 13. Send SMS Notification |
| 14. Else |
| 15. Send all readings to the cloud |
| 16. End if |
| 17. End if |
| 18. End for |
2.4. Monitoring and Control Center
2.5. Data Visualization
3. Results
3.1. Results for the Selection of Medical Devices
3.2. Results for the EM Radiation Detection System
3.3. Results for the Monitoring and Control Center
3.4. Results for Data Visualization
3.5. Overall Performance and Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EMC | Electromagnetic compatibility |
| IoT | Internet of Things |
| IEC | International Electrotechnical Commission |
| SMA | Simple Moving Average |
| SMS | Short Message Service |
| MSE | Mean Square Error |
| EMA | Exponential Moving Average |
| GSM | Global System for Mobile Communication |
| GPRS | General Packet Radio Service |
| MQTT | Message Queuing Telemetry Transport |
| TLS | Transport Layer Security |
References
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R. Medical 4.0 technologies for healthcare: Features, capabilities, and applications. Internet Things Cyber-Phys. Syst. 2022, 2, 12–30. [Google Scholar] [CrossRef]
- Hazmin, S.N.; Dianah, A.R.S.N.; Umar, R.; Dagang, A.N.; Kamarudin, M.K.A.; Jaafar, H. Non-ionizing radiation exposure: Electric field strength measurement around selected base stations in Kuala Nerus. J. Fundam. Appl. Sci. 2018, 10, 52–65. [Google Scholar]
- Mariappan, P.M.; Raghavan, D.R.; Abdel, S.H.E.; Zobaa, A.F. Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review. J. Adv. Res. 2016, 7, 727–738. [Google Scholar] [CrossRef]
- Duc, M.L.; Bilik, P. Analysis of EMC Factors on Electronic Devices Using PLS-SEM Method: A Case Study in Vietnam. Appl. Sci. 2023, 13, 1005. [Google Scholar] [CrossRef]
- AFSEC. Guide. Technical Guidelines to Electromagnetic Compatibility for Medical Devices. In AFSEC GUIDE 04; AFSEC: Cairo, Egypt, 2020. [Google Scholar]
- Ardiatna, W.; Mandaris, D.; Bakti, A.N.; Hidayat, S.W.; Leferink, F. EMI risk analysis via dedicated evaluation of the susceptibility of medical devices. In Proceedings of the 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, Suntec City, Singapore, 14–18 May 2018; pp. 205–209. [Google Scholar] [CrossRef]
- Kurniawan, E.; Basuki, R.; Porman, P.; Wibawa, I.P.; Hamdani, D. Insertion loss analysis of low voltage power line filter based on EMC standards. In Proceedings of the 2014 International Conference on Electrical Engineering and Computer Science (ICEECS), Bali, Indonesia, 24–25 November 2014; pp. 121–126. [Google Scholar] [CrossRef]
- Das, M.; Vogt-Ardatjew, R.; Van Den Berg, B.; Leferink, F. Risk-based EMC Approach in Hospital Environment. In Proceedings of the 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), Reno, NV, USA, 28 July–28 August 2020; pp. 676–680. [Google Scholar] [CrossRef]
- Hussain, S.M.; Saidi, S.A.S.A.; Frank, A. IoT-based Monitoring and Detection of Electromagnetic (EM) Radiation Levels. J. Student Res. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Kucera, M.; Gutten, M.; Simko, M.; Sebok, M.; Korenciak, D.; Jarina, R.; Pitonak, M. Electromagnetic Compatibility and Radiation Analysis in Control Room. Meas. Sci. Rev. 2019, 19, 126–131. [Google Scholar] [CrossRef]
- Kurta, E.; Kovačević, Z.; Gurbeta, L.; Badnjević, A. Electromagnetic compatibility of medical devices: Effects in everyday healthcare environment. In Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ayugi, G.; Kisolo, A.; Ireeta, T.W.; Opio, P. Temporal Variation of Radiofrequency Electromagnetic Field Exposure from Mobile Phone Base Stations in Sensitive Environments. IOSR J. Appl. Phys. 2020, 9, 9–15. [Google Scholar]
- Kurnaz, C.; Aygun, T. Characterization of Indoor and Outdoor Electric Field Strength Levels at Hospitals. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ishida, K.; Fujioka, T.; Endo, T.; Hosokawa, R.; Fujisaki, T.; Yoshino, R.; Hirose, M. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment. J. Med. Syst. 2016, 40, 46. [Google Scholar] [CrossRef]
- Lee, S.; Kim, N. Measurement and analysis of the electromagnetic fields radiated by the medical devices. Int. Symp. Med. Inf. Commun. Technol. ISMICT 2015, 2015, 56–58. [Google Scholar] [CrossRef]
- Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-Narborough, M.; Stewart, B.G.; Boreha, P. Imaging time series for the classification of EMI discharge sources. Sensors 2018, 18, 3098. [Google Scholar] [CrossRef] [PubMed]
- Witczak, D.; Szymoniak, S. Applied sciences Review of Monitoring and Control Systems Based on Internet of Things. Appl. Sci. 2024, 14, 8943. [Google Scholar] [CrossRef]
- Tocchi, A.; Roca, V.; Angrisani, L.; Bonavolonta, F.; Moriello, R.S.L. First step towards an IoT implementation of a wireless sensors network for environmental radiation monitoring. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Saleem, K.; Alajroosh, A.A.; Ouni, R.; Mansoor, W.; Gawanmeh, A. Smart and Secure IoT based Remote Real-Time Radiation Detection and Measurement System. In Proceedings of the 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia, 23–25 January 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Nyakuri, J.P.; Gatera, O.; Hwata, C.; Rushingabigwi, G.; Twizere, C.; Mukanyiligira, D. A Hybrid IoT-ML Based Electromagnetic Compatibility Monitoring and Prediction System for Biomedical Devices. In Proceedings of the 2024 6th International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Istanbul, Türkiye, 8–11 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Venkatesulu, S.V.; Ramana, M.N.G.P.; Venkata, P. Monitoring of Electromagnetic Radiation for Cellular Base Stations Using Arm Processor. Int. J. Innov. Res. Comput. Commun. Eng. 2014, 2, 4603–4609. [Google Scholar]
- Popescu, I.; Constantinou, P. Review of EMR monitoring systems developed by the Mobile Radiocommunications Laboratory, National technical University of Athens. Serbian J. Electr. Eng. 2014, 11, 435–455. [Google Scholar] [CrossRef]
- Havryliuk, V. Wavelet Based Detection of Signal Disturbances in Cab Signalling System. In Proceedings of the 2019 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Barcelona, Spain, 2–6 September 2019; pp. 94–99. [Google Scholar] [CrossRef]
- Vega, F.; Pantoja, J.; Morales, S.; Urbano, O.; Arévalo, A.; Muskus, E.; Pedraza, C.; Patiño, M.; Suarez, M.; Hernandez, N. An IoT-based open platform for monitoring non-ionizing radiation levels in Colombia. In Proceedings of the 2016 IEEE Colombian Conference on Communications and Computing (COLCOM), Cartagena, Colombia, 27–29 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Delgado-del-Carpio, M.; Zebadúa-Chavarría, L.A.; Hernández-de-León, H.R.; Escobar-Gómez, E.N.; Quevedo-López, M. IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics 2023, 12, 3042. [Google Scholar] [CrossRef]
- Mathur, P.; Raman, S. Electromagnetic Interference (EMI): Measurement and Reduction Techniques. J. Electron. Mater. 2020, 49, 2975–2998. [Google Scholar] [CrossRef]
- Panagiotakopoulos, T.; Kiouvrekis, Y.; Misthos, L.-M.; Kappas, C. RF-EMF exposure assessments in Greek schools to support ubiquitous IoT-based monitoring in smart cities. IEEE Access 2023, 11, 7145–7156. [Google Scholar] [CrossRef]
- Hwata, C.; Gatera, O. Evaluation of the awareness of electromagnetic compatibility and interference for improved medical device management observed in selected Rwanda district hospitals. Medicine 2024, 103, e41179. [Google Scholar] [CrossRef]
- IEC 60601-1-2:2014; Medical Electrical Equipment—Part 1-2: General Requirements for Basic Safety and Essential Performance—Collateral Standard: Electromagnetic Disturbances—Requirements and Tests. International Electrotechnical Commission: Geneva, Switzerland, 2014.
- Bukhari, M.M.; Alkhamees, B.F.; Hussain, S.; Gumaei, A.; Assiri, A.; Ullah, S.S. An Improved Artificial Neural Network Model for Effective Diabetes Prediction. Complexity 2021, 2021, 5525271. [Google Scholar] [CrossRef]
- Röösli, M.; Dongus, S.; Jalilian, H.; Eyers, J.; Esu, E.; Oringanje, C.M.; Meremikwu, M.; Bosch-Capblanch, X. The effects of radiofrequency electromagnetic fields exposure on tinnitus, migraine and non-specific symptoms in the general and working population: A systematic review and meta-analysis on human observational studies. Environ. Int. 2024, 183, 108338. [Google Scholar] [CrossRef] [PubMed]
- Mitiche, I.; Morison, G.; Nesbitt, A.; Hughes-narborough, M.; Stewart, B.G. Classification of Multiple Electromagnetic Interference Events in High-Voltage Power Plant. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018. [Google Scholar] [CrossRef]
- Nwankwo, C.; Karanja, S.; Vasanthakaalam, H. The occurrence of occupational health hazards in districts health facilities in Kigali, Rwanda. Int. J. Community Med. Public Health 2017, 5, 21. [Google Scholar] [CrossRef]
- Olanrewaju, R.F.; Ibrahim, S.N.; Asnawi, A.L.; Altaf, H. Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1520–1528. [Google Scholar] [CrossRef]
- Baranchuk, A.; Kang, J.; Shaw, C.; Campbell, D.; Ribas, S.; Hopman, W.M.; Alanazi, H.; Redfearn, D.P.; Simpson, C.S. Electromagnetic interference of communication devices on ECG machines. Clin. Cardiol. 2009, 32, 588–592. [Google Scholar] [CrossRef]
- Chung, S.; Yi, J.; Park, S.W. Electromagnetic Interference of Wireless Local Area Network on Electrocardiogram Monitoring System: A Case Report. Korean Circ. J. 2013, 43, 187–188. [Google Scholar] [CrossRef][Green Version]
- Islam, S.K.M.S.; Al Nasim, M.A.; Hossain, I.; Ullah, D.M.A.; Gupta, D.K.D.; Bhuiyan, M.M.H. Introduction of Medical Imaging Modalities. Data Driven Approaches Med. Imaging 2023, 1–25. [Google Scholar] [CrossRef]
- Quien, M.M.; Saric, M. Ultrasound imaging artifacts: How to recognize them and how to avoid them. Echocardiography 2018, 35, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Anwaar, W. Energy Efficient Computing: A Comparison of Raspberry PI with Modern Devices Internet of Things View project MS-Papers View project Energy Efficient Computing: A Comparison of Raspberry PI with Modern Devices. Int. J. Comput. Inf. Technol. 2015, 4, 764–2279. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC): Geneva, Switzerland, 2017.
- Ali, M.M.; Babai, M.Z.; Boylan, J.E.; Syntetos, A.A. On the use of Simple Moving Averages for supply chains where information is not shared. IFAC-PapersOnLine 2015, 48, 1756–1761. [Google Scholar] [CrossRef]
- Cai, Z.; Ravichandran, A.; Maji, S.; Fowlkes, C.; Tu, Z.; Soatto, S. Exponential moving average normalization for self-supervised and semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 194–203. [Google Scholar] [CrossRef]
- Oboué, Y.A.S.I.; Chen, Y.; Fomel, S.; Zhong, W.; Chen, Y. An advanced median filter for improving the signal-to-noise ratio of seismological datasets. Comput. Geosci. 2024, 182, 105464. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, M.; Cao, F.; Wang, Z.; Lu, D.; Hu, Y.; Dou, J.; Dai, J. Underwater polarization de-scattering imaging based on orthogonal polarization decomposition with low-pass filtering. Opt. Lasers Eng. 2023, 170, 107796. [Google Scholar] [CrossRef]
- Guo, F.; Wu, X.; Liu, L.; Ye, J.; Wang, T.; Fu, L.; Wu, Y. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network. Energy 2023, 270, 126880. [Google Scholar] [CrossRef]
- Syahrial, S.; Melinda, M.; Junidar, J.; Razali, S.; Zulhelmi, Z. Application of the Savitzky-Golay filter in multi-spectral signal processing. Sriwij. Electr. Comput. Eng. J. 2024, 1, 9–19. [Google Scholar] [CrossRef]
- Patel, J. The Critical Impact of Medical Equipment Downtime. Equipment Management. Available online: https://24x7mag.com/management/equipment-management/the-critical-impact-of-medical-equipment-downtime/ (accessed on 27 May 2025).
- Moloudian, G.; Hosseinifard, M.; Kumar, S.; Simorangkir, R.B.; Buckley, J.L.; Song, C.; Fantoni, G.; O’Flynn, B. RF Energy Harvesting Techniques for Battery-Less Wireless Sensing, Industry 4.0, and Internet of Things: A Review. IEEE Sens. J. 2024, 24, 5732–5745. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, P.; Zhao, L.; Zhou, X.; Dong, Q.; Wang, Z. Design of a Broadband Electromagnetic Signal Monitoring and Evaluation System Design of a Broadband Electromagnetic Signal Monitoring and Evaluation System. Earth Environ. Sci. 2020, 428, 012030. [Google Scholar] [CrossRef]
- Choi, S.K.; Yang, C.H.; Kwak, J. System hardening and security monitoring for IoT devices to mitigate IoT security vulnerabilities and threats. KSII Trans. Internet Inf. Syst. 2018, 12, 906–918. [Google Scholar] [CrossRef]
- Khan, M.A.; Din, I.U.; Kim, B. Visualization of Remote Patient Monitoring System Based on Internet of Medical Things. Sustainability 2023, 15, 8120. [Google Scholar] [CrossRef]








| Filtering Technique | Mean Squared Error (V 2) | Signal-to-Noise Ratio (dB) |
|---|---|---|
| Simple Moving Average (SMA) | 0.385122 | 6.940508 |
| Exponential Moving Average (EMA) | 0.189109 | 9.995846 |
| Median Filter | 0.349088 | 7.684709 |
| Low-Pass Filter | 0.320519 | 7.731447 |
| Savitzky–Golay Filter | 0.235142 | 9.308036 |
| Monitoring System Ref | Application | Operating System | Remote Monitoring | Cloud Storage | Wireless Transfer | Remote Notification | Portability | Real-Time |
|---|---|---|---|---|---|---|---|---|
| [2] | Environmental Radiation monitoring | Linux | ✔ | ✔ | ✔ | ⮿ | ✔ | ⮿ |
| [3] | High voltage Transformers | Dedicated software | ⮿ | ⮿ | ⮿ | ⮿ | ⮿ | ⮿ |
| [21] | Cellular Base Stations | Dedicated software | ⮿ | ⮿ | ⮿ | ✔ | ⮿ | ✔ |
| [4] | Environmental Radiation monitoring | Dedicated software | ✔ | ✔ | ✔ | ⮿ | ✔ | ✔ |
| [5] | Environmental Radiation monitoring | Any | ✔ | ✔ | ✔ | ⮿ | ✔ | ✔ |
| [6] | Computer Generated EM radiation detector | Any | ✔ | ✔ | ✔ | ⮿ | ✔ | ✔ |
| [7] | Environmental Radiation detector | Any | ✔ | ✔ | ✔ | ⮿ | ✔ | ✔ |
| This work (IEMCM) | Medical equipment | Linux | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwata, C.; Rushingabigwi, G.; Gatera, O.; Mukalinyigira, D.; Twizere, C.; Thomas, B.N.; Peluffo-Ord’onez, D.H. Internet of Things-Based Electromagnetic Compatibility Monitoring (IEMCM) Architecture for Biomedical Devices. Appl. Sci. 2025, 15, 12337. https://doi.org/10.3390/app152212337
Hwata C, Rushingabigwi G, Gatera O, Mukalinyigira D, Twizere C, Thomas BN, Peluffo-Ord’onez DH. Internet of Things-Based Electromagnetic Compatibility Monitoring (IEMCM) Architecture for Biomedical Devices. Applied Sciences. 2025; 15(22):12337. https://doi.org/10.3390/app152212337
Chicago/Turabian StyleHwata, Chiedza, Gerard Rushingabigwi, Omar Gatera, Didacienne Mukalinyigira, Celestin Twizere, Bolaji N. Thomas, and Diego H. Peluffo-Ord’onez. 2025. "Internet of Things-Based Electromagnetic Compatibility Monitoring (IEMCM) Architecture for Biomedical Devices" Applied Sciences 15, no. 22: 12337. https://doi.org/10.3390/app152212337
APA StyleHwata, C., Rushingabigwi, G., Gatera, O., Mukalinyigira, D., Twizere, C., Thomas, B. N., & Peluffo-Ord’onez, D. H. (2025). Internet of Things-Based Electromagnetic Compatibility Monitoring (IEMCM) Architecture for Biomedical Devices. Applied Sciences, 15(22), 12337. https://doi.org/10.3390/app152212337

