Abstract
Electromagnetic compatibility is the capability of electrical and electronic equipment to function properly around devices radiating electromagnetic energy, without mutual disturbance. Hospital environments contain numerous devices operating simultaneously and sharing resources. Undetected electromagnetic interference can cause medical devices’ malfunctions, exposing patients and staff. Traditional monitoring is time-consuming and relies on expert interpretation. An Internet of Things-enabled embedded system architecture for remote and real-time monitoring of electromagnetic fields from medical devices is proposed. It integrates frequency probes, a Raspberry Pi 4, and a communication module. A three-month study conducted at Muhima District Hospital, Kigali, Rwanda, demonstrated the system’s effectiveness in monitoring electromagnetic field levels and cloud transmission. The signals were benchmarked against International Electrotechnical Commission and Rwanda Standards Board standards. Alerts are triggered when thresholds are exceeded, with results plotted on website and mobile interfaces. Emissions were highest at noon when the equipment was most active and lower after 1:30 PM, indicating reduced activity. The sample recorded statistics of electric fields include mean (1.0028), minimum (0.7228), and maximum (1.3515). Among the five filters evaluated, the Savitzky–Golay performed better, with MSE (0.235) and SNR (9.308). A 412 ms average latency and 24 h operation was achieved, offering a portable solution for hospital safety and equipment optimization.