Predicting Visual Comfort in Art Galleries: The Interactive Influence of Painting Tones and Illuminance
Abstract
1. Introduction
1.1. The Influence of the Color Tones of Paintings on Visual Comfort
1.2. The Mechanism of Illuminance on Visual Comfort
1.3. Visual Comfort Assessment
1.4. Summary of Relevant Research
2. Materials and Methods
2.1. Painting Selection and Preparation
2.2. Participants
2.3. Experimental Light Environment and Setup
2.3.1. Environmental Settings
2.3.2. Light Source Spectral Characteristics
2.4. Experimental Procedure
2.5. Subjective and Objective Data
2.5.1. Subjective Questionnaire
2.5.2. Eye Movement Feature Extraction
2.6. Model Evaluation
3. Results
3.1. Subjective Data
3.1.1. Individual Effect Analysis
3.1.2. Interaction Effect Analysis
3.2. Eye Movement Analysis
3.2.1. Coefficient of Variation in Pupil Diameter
3.2.2. AOI Gaze Analysis
3.3. Modeling and Prediction
3.3.1. Feature Preprocessing
3.3.2. Model Implementation and Performance Assessment
4. Discussion
4.1. Systematic Integration of Interdisciplinary Theories and Technologies
4.2. Construction of the Subjective and Objective Collaborative Evaluation Model
4.3. Scene Verification and Explainability Improvement of Prediction Models
4.4. Research Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOI | Area of Interest |
SMOTE | Synthetic Minority Oversampling Technique |
BP | Back Propagation |
SVM | Support Vector Machine |
XGBoost | eXtreme Gradient Boosting |
RF | Random Forest |
DT | Decision Tree |
SHAP | SHapley Additive exPlanations |
References
- Carlucci, S.; Causone, F.; De Rosa, F.; Pagliano, L. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 2015, 47, 1016–1033. [Google Scholar] [CrossRef]
- Cirrincione, L.; La Gennusa, M.; Peri, G.; Rizzo, G.; Scaccianoce, G. Indoor Parameters of Museum Buildings for Guaranteeing Artworks Preservation and People’s Comfort: Compatibilities, Constraints, and Suggestions. Energies 2024, 17, 1968. [Google Scholar] [CrossRef]
- Hassanizadeh, N.; Noorzai, E. Improving lighting efficiency in existing art museums: A case study. Facilities 2020, 39, 366–388. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, K. The physical environment in museums and its effects on visitors’ satisfaction. Build. Environ. 2006, 41, 963–969. [Google Scholar] [CrossRef]
- Yao, C.; Tian, T.; Gao, C.; Zhao, S.; Liu, Q. Visual performance of painting colors based on psychological factors. Front. Psychol. 2022, 13, 966571. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tong, F. The Same of Beauty of Vision: The Common Research of Photography and Painting. SIASAT 2021, 6, 120–125. [Google Scholar] [CrossRef]
- Hosap, W.; Khundam, C.; Preeyawongsakul, P.; Vorachart, V.; Noël, F. The Influence of Light and Color in Digital Paintings of Environmental Issues on Emotions and Cognitions. Informatics 2023, 10, 26. [Google Scholar] [CrossRef]
- Hathibelagal, A.R. The impact of display saturation on visual search performance in congenital colour vision deficiency. PLoS ONE 2023, 18, e0290782. [Google Scholar] [CrossRef]
- Jaglarz, A. Color as a Key Factor in Creating Sustainable Living Spaces for Seniors. Sustainability 2024, 16, 10251. [Google Scholar] [CrossRef]
- Qian, L.; Zeng, X.; Liu, X.; Peng, L. The impact of varied correlated color temperatures on visual comfort in museum exhibitions: Integrating physiological and subjective assessments. J. Asian Archit. Build. Eng. 2025, 24, 1836–1850. [Google Scholar] [CrossRef]
- Dalke, H.; Little, J.; Niemann, E.; Camgoz, N.; Steadman, G.; Hill, S.; Stott, L. Colour and lighting in hospital design. Opt. Laser Technol. 2006, 38, 343–365. [Google Scholar] [CrossRef]
- Iacomussi, P.; Radis, M.; Rossi, G.; Rossi, L. Visual Comfort with LED Lighting. Energy Procedia 2015, 78, 729–734. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J. New prospectives on light adaptation of visual system research with the emerging knowledge on non-image-forming effect. Front. Built Environ. 2022, 8, 1019460. [Google Scholar] [CrossRef]
- Mathôt, S. Pupillometry: Psychology, Physiology, and Function. J. Cogn. 2018, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Loe, D.L. Light, vision and illumination: The interaction revisited. Lighting Res. Technol. 2016, 48, 176–189. [Google Scholar] [CrossRef]
- Johansson, R.C.G.; Kelber, P.; Ulrich, R. Speeded classification of visual events is sensitive to crossmodal intensity correspondence. J. Exp. Psychol. Hum. Percept. Perform. 2024, 50, 554–569. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef]
- Harrison, J.; Lee, J.; Ormsby, B.; Payne, D.J. The influence of light and relative humidity on the formation of epsomite in cadmium yellow and French ultramarine modern oil paints. Herit. Sci. 2021, 9, 107. [Google Scholar] [CrossRef]
- GB/T 23863-2009; Museum Lighting Design Specification. China National Standardization Administration: Beijing, China, 2009.
- Dang, R.; Zhang, T.; Wang, J.; Tang, M.; Jiang, P.; Song, X.; Zhang, R.; Zhang, X. Lighting quantity indexes for lighting traditional Chinese paintings based on pigments protection and substrates protection in museums. Opt. Express 2021, 29, 22667. [Google Scholar] [CrossRef]
- Shi, L.; Li, Y.; Tao, L.; Zhang, Y.; Jiang, X.; Yang, Z.; Qi, X.; Qiu, J. Sporters’ visual comfort assessment in gymnasium based on subjective evaluation & objective physiological response. Build. Environ. 2022, 225, 109678. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, L.; Guo, X.; Wang, Z.; Li, R. Evaluation of Rural Visual Landscape Quality Based on Multi-Source Affective Computing. Appl. Sci. 2025, 15, 4905. [Google Scholar] [CrossRef]
- Kong, Z.; Zhang, R.; Ni, J.; Ning, P.; Kong, X.; Wang, J. Towards an integration of visual comfort and lighting impression: A field study within higher educational buildings. Build. Environ. 2022, 216, 108989. [Google Scholar] [CrossRef]
- Houser, K.W.; Tiller, D.K. Measuring the subjective response to interior lighting: Paired comparisons and semantic differential scaling. Light. Res. Technol. 2003, 35, 183–195. [Google Scholar] [CrossRef]
- Zheng, F.; Hou, F.; Chen, R.; Mei, J.; Huang, P.; Chen, B.; Wang, Y. Investigation of the Relationship Between Subjective Symptoms of Visual Fatigue and Visual Functions. Front. Neurosci. 2021, 15, 686740. [Google Scholar] [CrossRef]
- Couret, D.; Boumaza, D.; Grisotto, C.; Triglia, T.; Pellegrini, L.; Ocquidant, P.; Bruder, N.J.; Velly, L.J. Reliability of standard pupillometry practice in neurocritical care: An observational, double-blinded study. Crit. Care 2016, 20, 99. [Google Scholar] [CrossRef]
- Steinhauer, S.R.; Bradley, M.M.; Siegle, G.J.; Roecklein, K.A.; Dix, A. Publication Guidelines and Recommendations for Pupillary Measurement in Psychophysiological Studies. Psychophysiology 2022, 59, e14035. [Google Scholar] [CrossRef]
- Massaro, D.; Savazzi, F.; Di Dio, C.; Freedberg, D.; Gallese, V.; Gilli, G.; Marchetti, A. When Art Moves the Eyes: A Behavioral and Eye-Tracking Study. PLoS ONE 2012, 7, e37285. [Google Scholar] [CrossRef]
- Reitstätter, L.; Brinkmann, H.; Santini, T.; Specker, E.; Dare, Z.; Bakondi, F.; Miscená, A.; Kasneci, E.; Leder, H.; Rosenberg, R. The display makes a difference: A mobile eye tracking study on the perception of art before and after a museum’s rearrangement. J. Eye Mov. Res. 2020, 13, 1–29. [Google Scholar] [CrossRef]
- Dai, Y.; Ren, Y.; Li, H.; Wang, M. Evaluating Art Exhibition Spaces Through Space Syntax and Multimodal Physiological Data. Buildings 2025, 15, 1776. [Google Scholar] [CrossRef]
- Ma, G.; Pan, X. Research on a Visual Comfort Model Based on Individual Preference in China through Machine Learning Algorithm. Sustainability 2021, 13, 7602. [Google Scholar] [CrossRef]
- Zagar, K.; Kurent, B.; Bohinc, U.; Legat, A.; Rebec, K.M. The Development of Personalized Visual Comfort Prediction Models Using Machine Learning Algorithms. In Proceedings of the 2024 IEEE Sustainable Smart Lighting World Conference & Expo (LS24), Eindhoven, The Netherlands, 12–14 November 2024; pp. 1–4. [Google Scholar]
- Kang, S.Y.; Cho, J.E.; Jun, H.J. EEG-Driven Personal Comfort Model for Cognitive Efficiency in Human-Centric Environments. Buildings 2025, 15, 3339. [Google Scholar] [CrossRef]
- Cannon-Brookes, S. Daylighting Museum Galleries: A Review of Performance Criteria. Light. Res. Technol. 2000, 32, 161–168. [Google Scholar] [CrossRef]
- Jianfeng, W.; Euitay, J. The Research on Carpet Design Development As a Homage to William Morris. J. Psychol. Res. 2024, 14, 223–236. [Google Scholar] [CrossRef]
- Kang, S.; Ou, D.; Mak, C.M. The impact of indoor environmental quality on work productivity in university open-plan research offices. Build. Environ. 2017, 124, 78–89. [Google Scholar] [CrossRef]
- Feltrin, F.; Leccese, F.; Hanselaer, P.; Smet, K.A.G. Impact of Illumination Correlated Color Temperature, Background Lightness, and Painting Color Content on Color Appearance and Appreciation of Paintings. Leukos J. Illum. Eng. Soc. N. Am. 2019, 16, 25–44. [Google Scholar] [CrossRef]
- Bellia, L.; Fragliasso, F.; Stefanizzi, E. Effects of Light Source Spectrum and Background Colour on the Perception of Paintings. Light. Res. Technol. 2020, 52, 147715351984725. [Google Scholar] [CrossRef]
- Mansfield, J.R.; Attas, M.; Majzels, C.; Cloutis, E.; Collins, C.; Mantsch, H.H. Near Infrared Spectroscopic Reflectance Imaging: A New Tool in Art Conservation. Vib. Spectrosc. 2002, 28, 59–66. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, H.; Dang, R. Indicators for lighting Chinese paintings in museums based on the protection standards and color preferences. Energy Build. 2023, 299, 113610. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, Y.; Zhang, H. Ocular Autonomic Nervous System: An Update from Anatomy to Physiological Functions. Vision 2022, 6, 6. [Google Scholar] [CrossRef]
- Jebb, A.T.; Ng, V.; Tay, L. A Review of Key Likert Scale Development Advances: 1995–2019. Front. Psychol. 2021, 12, 637547. [Google Scholar] [CrossRef]
- Cordón, I.; García, S.; Fernández, A.; Herrera, F. Imbalance: Oversampling algorithms for imbalanced classification in R. Knowl. Based Syst. 2018, 161, 329–341. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Zhang, M.; Qin, X.; Liu, T. Exploring the Influence of the Illumination and Painting Tone of Art Galleries on Visual Comfort. Photonics 2022, 9, 981. [Google Scholar] [CrossRef]
- Rasouli Kahaki, Z.; Jahangiri, H.; Smith, A.P.; Kazemi, R. Subjective and objective survey of office lighting: Effects on alertness, comfort, satisfaction, and safety. La Med. Del Lav. 2022, 113, 2. [Google Scholar] [CrossRef]
- Talebi, S. Modeling Autonomic Pupillary Responses from External Stimuli Using Machine Learning. Biomed. J. Sci. Tech. Res. 2019, 20, 003446. [Google Scholar] [CrossRef]
- Bao, J.; Song, X.; Li, Y.; Bai, Y.; Zhou, Q. Effect of lighting illuminance and colour temperature on mental workload in an office setting. Sci. Rep. 2021, 11, 15284. [Google Scholar] [CrossRef] [PubMed]
- Arguelles-Prieto, R.; Madrid, J.A.; Rol, M.A.; Bonmati-Carrion, M.A. Correlated color temperature and light intensity: Complementary features in non-visual light field. PLoS ONE 2021, 16, e0254171. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Bai, Q.; Xiao, K.; Lu, Y.; Ma, L.; Dang, R. Color rendering evaluation model for lighting of traditional Chinese freehand brushwork paintings in museums. NPJ Herit. Sci. 2025, 13, 427. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z.; Zhang, T.; Liu, T.; Yu, H.; Wang, H. Impact of Lighting Conditions on Emotional and Neural Responses of International Students in Cultural Exhibition Halls. Buildings 2025, 15, 2507. [Google Scholar] [CrossRef]
- Almustanyir, A.; Almutairi, M.S.; Aldrwish, A.; Hasrod, N.; Alqhtani, B.A.; Alqahtani, T.; Alanazi, M.; Alghamdi, M.; Almutleb, E.; Alabdulkader, B.; et al. The Effect of Pupil Size on Cone Contrast Sensitivity. Life 2025, 15, 801. [Google Scholar] [CrossRef]
- Li, R.; Yuizono, T.; Li, X. Affective computing of multi-type urban public spaces to analyze emotional quality using ensemble learning-based classification of multi-sensor data. PLoS ONE 2022, 17, e0269176. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, Q.; Zhang, X.; Dong, L.; Bai, S.; Zeng, D.; Zhang, Z.; Zhang, H.; Xi, Y. Interpretable machine learning for maximum corrosion depth and influence factor analysis. NPJ Mater. Degrad. 2023, 7, 9–15. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Mahmood, M.S.; Ali, T.; Inam, I.; Qureshi, M.Z.; Zaidi, S.S.A.; Alqurashi, M.; Ahmed, H.; Adnan, M.; Hotak, A.H. Machine learning prediction and explainability analysis of high strength glass powder concrete using SHAP PDP and ICE. Sci. Rep. 2025, 15, 22089. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.A.M.; Greenop, M.; Ashton, L.; Rehman, I.U. Applications of Machine Learning in Spectroscopy. Appl. Spectrosc. Rev. 2021, 56, 733–763. [Google Scholar] [CrossRef]
Light Sensitivity | Category | Illuminance Standard Value |
---|---|---|
Very sensitive | Traditional Chinese painting, murals, gouache painting, watercolor painting | Illuminance ≤ 50 lx |
Sensitive | Oil paintings, egg white paintings | Illuminance ≤ 150 lx |
Not sensitive | Copper engraving, silk screen engraving, decorative paintings | Illuminance ≤ 300 lx |
Sample Size (Male/Female) | Age Range (Years) | Average Age ± SD (Years) | |
---|---|---|---|
Main experiment | 30 (15/15) | 21–43 | 24.51 ± 4.53 |
External verification | 10 (5/5) | 20–46 | 25.32 ± 5.73 |
Indicator | Very Dissatisfied | Dissatisfied | General | Satisfied | Very Satisfied |
---|---|---|---|---|---|
Color satisfaction | 1 | 2 | 3 | 4 | 5 |
Atmosphere satisfaction | 1 | 2 | 3 | 4 | 5 |
Psychological pleasure degree | 1 | 2 | 3 | 4 | 5 |
Overall preference | 1 | 2 | 3 | 4 | 5 |
AOI Defines Dimensions | Specific Details | Reason |
---|---|---|
Coverage area | The entire painting | Avoid edge effects in non-painting areas |
Physical dimensions | 400 mm × 500 mm | Keep consistent with the standardized painting size |
Spatial positioning | Centered on painting | The fixed viewing position of the experiment |
Data rules | The fixation point is ≥80 milliseconds | Distinguish between effective fixation and random fixation |
Indicator | Very Dissatisfied | Dissatisfied | General |
---|---|---|---|
Color satisfaction | Illuminance | 6.361 | 0.002 |
Tone | 0.082 | 0.921 | |
Illuminance * tone | 2.622 | 0.034 | |
Atmosphere satisfaction | Illuminance | 1.268 | 0.282 |
Tone | 1.116 | 0.328 | |
Illuminance * tone | 4.405 | 0.002 | |
Psychological pleasure degree | Illuminance | 16.358 | 0.000 |
Tone | 28.084 | 0.000 | |
Illuminance * tone | 2.277 | 0.060 | |
Overall preference | Illuminance | 3.968 | 0.020 |
Tone | 3.829 | 0.022 | |
Illuminance * tone | 0.669 | 0.614 |
Test Variable | Shapiro–Wilk (S-W) | Kolmogorov–Smirnov (K-S) | ||||
---|---|---|---|---|---|---|
Statistic | df | Sig. | Statistic | df | Sig. | |
50 lx cold | 0.972 | 30 | 0.588 | 0.126 | 30 | 0.659 |
50 lx in the middle | 0.972 | 30 | 0.575 | 0.139 | 30 | 0.541 |
50 lx warm | 0.943 | 30 | 0.103 | 0.167 | 30 | 0.316 |
150 lx cold | 0.958 | 30 | 0.252 | 0.155 | 30 | 0.405 |
150 lx in the middle | 0.973 | 30 | 0.598 | 0.118 | 30 | 0.734 |
150 lx warm | 0.943 | 30 | 0.098 | 0.12 | 30 | 0.718 |
300 lx cold | 0.945 | 30 | 0.110 | 0.157 | 30 | 0.392 |
300 lx in the middle | 0.974 | 30 | 0.640 | 0.097 | 30 | 0.905 |
300 lx warm | 0.958 | 30 | 0.266 | 0.133 | 30 | 0.595 |
Effect | F | Sig. |
---|---|---|
Illuminance | 4.656 | 0.010 |
Tone | 3.011 | 0.050 |
Illuminance * tone | 29.446 | 0.000 |
50 lx | 150 lx | 300 lx | F | P | |
---|---|---|---|---|---|
AOI total gaze time (s) | 82.06 | 67.40 | 71.12 | 11.505 | 0.000 |
First gaze time of AOI (s) | 1.97 | 1.81 | 1.85 | 0.102 | 0.019 |
Number of visits | 19.42 | 10.61 | 10.74 | 15.955 | 0.000 |
Model | Dataset | MAE | RMSE | MSE | R2 |
---|---|---|---|---|---|
BP | Training | 0.015 | 0.124 | 0.083 | 0.850 |
Verification | 0.021 | 0.146 | 0.100 | 0.739 | |
Test | 0.024 | 0.155 | 0.106 | 0.755 | |
RF | Training | 0.006 | 0.078 | 0.043 | 0.941 |
Verification | 0.020 | 0.142 | 0.087 | 0.794 | |
Test | 0.015 | 0.122 | 0.068 | 0.816 | |
SVM | Training | 0.006 | 0.076 | 0.043 | 0.944 |
Verification | 0.018 | 0.134 | 0.083 | 0.818 | |
Test | 0.012 | 0.109 | 0.062 | 0.855 | |
DT | Training | 0.005 | 0.072 | 0.027 | 0.949 |
Verification | 0.016 | 0.128 | 0.063 | 0.833 | |
Test | 0.011 | 0.106 | 0.048 | 0.863 | |
XGBoost | Training | 0.009 | 0.097 | 0.064 | 0.903 |
Verification | 0.008 | 0.092 | 0.058 | 0.925 | |
Test | 0.006 | 0.078 | 0.047 | 0.928 | |
External verification | 0.012 | 0.111 | 0.049 | 0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Gao, Z.; Zhang, T.; Li, R.; Wang, Z. Predicting Visual Comfort in Art Galleries: The Interactive Influence of Painting Tones and Illuminance. Appl. Sci. 2025, 15, 11183. https://doi.org/10.3390/app152011183
Zhao X, Gao Z, Zhang T, Li R, Wang Z. Predicting Visual Comfort in Art Galleries: The Interactive Influence of Painting Tones and Illuminance. Applied Sciences. 2025; 15(20):11183. https://doi.org/10.3390/app152011183
Chicago/Turabian StyleZhao, Xinyu, Zengrong Gao, Tong Zhang, Ruiqi Li, and Zhisheng Wang. 2025. "Predicting Visual Comfort in Art Galleries: The Interactive Influence of Painting Tones and Illuminance" Applied Sciences 15, no. 20: 11183. https://doi.org/10.3390/app152011183
APA StyleZhao, X., Gao, Z., Zhang, T., Li, R., & Wang, Z. (2025). Predicting Visual Comfort in Art Galleries: The Interactive Influence of Painting Tones and Illuminance. Applied Sciences, 15(20), 11183. https://doi.org/10.3390/app152011183