Study on the Effect of Seatback Recline Angle and Connection Stiffness on Occupant Injury in High-Speed Train Collisions
Abstract
1. Introduction
2. Methods
2.1. Research Method
2.2. The Finite Element Model
2.3. Validation of Seated Dummy Model Experiments
2.4. Injury Assessment of the Dummy
2.4.1. Head Injury
2.4.2. Neck Injury
2.4.3. Chest Injury
2.4.4. Leg Injury
2.5. Working Condition
3. Results and Discussion
3.1. Effect of Front-Row Seatback Recline Angle on Occupant Injury Severity
3.2. Influence of Seatback-to-Base Connection Stiffness on Occupant Injuries
3.3. Optimization Analysis of Connection Stiffness
3.4. Combined Effects of Seatback Recline Angle and Connection Stiffness on Dummy Injuries
3.4.1. Influence of Connection Stiffness on Dummy Injuries at 10° Seatback Recline
3.4.2. Influence of Connection Stiffness on Occupant Injuries at 20° Seatback Recline
3.5. Response Surface Optimization Analysis
3.5.1. Response Surface Modeling
3.5.2. Verification Analysis of Optimization Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, X.; Robinson, M.; Schmid, F.; Smith, R. Development issues for impact safety of rail vehicles: Robustness of crashworthy designs, effect of structural crashworthiness on passenger safety and behaviour characterisation of vehicle materials. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 461–470. [Google Scholar] [CrossRef]
- Gao, G.; Wang, S. Crashworthiness of passenger rail vehicles: A review. Int. J. Crashworthiness 2019, 24, 664–676. [Google Scholar] [CrossRef]
- Gao, G.; Zhuo, T.; Guan, W. Recent research development of energy-absorption structure and application for railway vehicles. J. Cent. South Univ. 2020, 27, 1012–1038. [Google Scholar] [CrossRef]
- Jing, L.; Liu, K.; Wang, C. Recent advances in the collision passive safety of trains and impact biological damage of drivers and passengers. Explos. Shock Wave. 2021, 41, 135–167. [Google Scholar] [CrossRef]
- Ding, S. Advances and prospect on passive safety technology for Chinese high-speed trains. J. Cent. South Univ. 2022, 53, 1547–1558. [Google Scholar] [CrossRef]
- Yao, S.; Yan, K.; Lu, S.; Xu, P. Equivalence study involving rail vehicle collision test conditions. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 233, 73–89. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, P.; Li, B.; Yao, S.; Yang, C.; Guo, W.; Xiao, X. Full-scale train-to-train impact test and multi-body dynamic simulation analysis. Machines 2021, 9, 297. [Google Scholar] [CrossRef]
- Lu, S.; Wang, P.; Yan, K.; Ni, W.; Bao, H.; Zhu, W. Investigation on similitude method for dynamic response of high-speed train body considering thickness distortion. Int. J. Crashworthiness 2024, 29, 1085–1097. [Google Scholar] [CrossRef]
- Lu, S.; Wang, P.; Ni, W.; Yan, K.; Zhao, S.; Yang, C.; Xu, P. Energy absorption design for crash energy management passenger trains based on scaled model. Struct. Multidiscip. Optim 2022, 65, 2. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, H.; Liu, M.; Li, Z.; Xu, P.; Che, Q. A study on the frontal oblique collision-induced derailment mechanism in subway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 234, 584–595. [Google Scholar] [CrossRef]
- Liu, K.; Jing, L.; Wang, K.; Li, Q.M. Design optimization of the bamboo-inspired foam-filled tube for high-speed train collision energy absorption. Int. J. Mech. Sci. 2024, 271, 109128. [Google Scholar] [CrossRef]
- Carvalho, M.; Ambrosio, J.; Milho, J. Implications of the inline seating layout on the protection of occupants of railway coach interiors. Int. J. Crashworthiness 2011, 16, 557–568. [Google Scholar] [CrossRef]
- Xu, P.; Xiao, X.; Yao, S. A review of train passenger safety—Inspiration from passive safety passenger protection technology of automobile. Transp. Saf. Environ. 2021, 4, tdab032. [Google Scholar] [CrossRef]
- Ambrosio, J.; Carvalho, M.; Milho, J.; Escalante, S.; Martin, R. A validated railway vehicle interior layout with multibody dummies and finite element seats models for crash analysis. Multibody Syst. Dyn. 2022, 54, 179–212. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Zhao, H.; Lu, Z. Second impact effect of chair distance of high-speed train on occupant injury. Comput. Aided Eng. 2008, 17, 1–3. [Google Scholar]
- Wang, W.; Zhao, H.; Liu, X. Railway Vehicle Occupant’s Injury Caused by the Impact Second. Urban Mass Transit. 2007, 10, 23–27. [Google Scholar] [CrossRef]
- Wang, W. Influence factors of railway vehicle interior impact injury. Appl. Mech. Mater. 2011, 79, 227–231. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Zhan, J. Train driver protection under secondary impact. J. Cent. South. Univ. 2019, 26, 905–915. [Google Scholar] [CrossRef]
- Hou, L.; Peng, Y.; Sun, D. Neck injury mechanisms in train collisions: Dynamic analysis and data mining of the driver impact injury. Accid. Anal. Prev. 2020, 146, 105725. [Google Scholar] [CrossRef]
- Xie, S.; Tian, H. Influencing factors and sensitivity analysis of occupant impact injury in passenger compartment. Traffic Inj. Prev. 2013, 14, 816–822. [Google Scholar] [CrossRef]
- Xie, S.; Tian, H. Dynamic simulation of railway vehicle occupants under secondary impact. Veh. Syst. Dyn. 2013, 51, 1803–1817. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, H. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments. Traffic Inj. Prev. 2014, 15, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Milho, J.; Ambrosio, J.; Ramos, N. Railway occupant passive safety improvement by optimal design. Int. J. Crashworthiness 2017, 22, 624–634. [Google Scholar] [CrossRef]
- Carvalho, M.; Martins, A.; Milho, J. Railway seat design for injury mitigation in crash scenario. Int. J. Rail Transp. 2020, 8, 215–233. [Google Scholar] [CrossRef]
- Deng, G.; Xu, T.; Peng, Y.; Sun, D.; Hu, Z.; Deng, M.; Wang, K.; Simms, C. Validated numerical unrestrained occupant-seat crash scenarios for high-speed trains integrating experimental, computational, and inverse methods. Traffic Inj. Prev. 2024, 25, 640–648. [Google Scholar] [CrossRef]
- Yao, S.; Kong, L.; Xiao, X.; Xu, P. Effect of seat direction on sitting occupant injury risk and improving strategy in the commuter train frontal crash. Int. J. Rail Transp. 2024, 12, 346–367. [Google Scholar] [CrossRef]
- Yao, S.; Kong, L.; Xu, P.; Xiao, X.; Peng, Y. Investigation on the dynamic characteristic of occupant during the frontal collision between high-speed train and obstacle. Accid. Anal. Prev. 2024, 199, 107495. [Google Scholar] [CrossRef]
- Lu, J.; Wang, X.; Qin, R.; Chen, B. Design of energy-absorbing bionic workstation table for trains and research on occupant collision injury. Int. J. Crashworthiness 2024, 29, 1118–1132. [Google Scholar] [CrossRef]
- Yu, Z.; Jing, L.; Huang, Z. Mechanical response and risk assessment of head and neck injury in high-speed train rear-end collision. Chin. J. Appl. Mech. 2024, 41, 77–89. [Google Scholar] [CrossRef]
- Yu, Z.; Jing, L. Head injury mechanisms of the occupant under high-speed train rear-end collision. Theor. Appl. Mech. Lett. 2024, 14, 100537. [Google Scholar] [CrossRef]
- Pratomo, A.N.; Ilhamsyah, R.; Fadillah, H.; Dirgantara, T.; Wibowo, A.; Raharno, S. Optimisation of crashworthy passenger train seat structure to reduce injury risks. Int. J. Crashworthiness 2025, 1–14. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, L.; Song, Y. Analysis of Secondary Impact on Passenger Injuries in a Subway Vehicle Based on Sitting Dummy. J. China Railw. Soc. 2015, 37, 14–22. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, B. Study of Impact on Passenger Injuries in a Subway Vehicle based on Simplified Model of Secondary Collision. J. Dalian Jiaotong Univ. 2017, 38, 37–42. [Google Scholar]
- Peng, Y.; Xu, T.; Hou, L.; Fan, C.; Zhou, W. An investigation of dynamic responses and head injuries of standing subway passengers during collisions. Appl. Bionics Biomech. 2018, 1, 1096056. [Google Scholar] [CrossRef]
- Yao, S.; Li, X.; Xiao, X.; Xu, P.; Che, Q. Injuries to standing passengers using different handrails in subway train collision accidents. Int. J. Crashworthiness 2021, 26, 53–64. [Google Scholar] [CrossRef]
- Yu, Z.; Zheng, S.; Liu, K.; Gao, Z.; Zhao, L.; Jing, L. A modified finite element dummy model of Chinese adult male used for train collision simulations. Int. J. Rail Transp. 2024, 12, 709–732. [Google Scholar] [CrossRef]
- Yang, W.; Xie, S.; Li, H.; Chen, Z. Design and injury analysis of the seated occupant protection posture in train collision. Saf. Sci. 2019, 117, 263–275. [Google Scholar] [CrossRef]
- Deng, G.; Wang, F.; Yu, C.; Peng, Y.; Xu, H.; Li, Z.; Hou, L.; Wang, Z. Assessment of standing passenger traumatic brain injury caused by ground impact in subway collisions. Accid. Anal. Prev. 2022, 166, 106547. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, O.; Kaya, N. Structural optimisation of a passenger seat according to crash injury criteria with artificial neural networks. Mech. Based Des. Struc. Mach. 2025, 53, 5717–5736. [Google Scholar] [CrossRef]
- Freeman, J.; Matthews, P. Improving the Design of Seats and Tables, and Evaluating Restraints to Minimise Passenger Injuries—Review of Two-Point Passenger Restraints; Rail Safety and Standards Board Ltd.: London, UK, 2005. [Google Scholar]
- GM/RT2100:2020; Rail Vehicle Structures and Passive Safety. Rail Safety and Standards Board Limited (RSSB): London, UK, 2020.
- EN 15227:2020; Railway Applications-Crashworthiness Requirements for Rail Vehicles. British Standards Institution (BSI): London, UK, 2020.
- AV/ST9001:2002; Vehicle Interior Crashworthiness. Railway Safety Evergreen House: London, UK, 2002.
Material | Density (kg/mm3) | Elasticity Modulus (GPa) | Poisson’s Ratio | Yield Stress (Mpa) |
---|---|---|---|---|
Aluminum alloy | 2.8 × 10−6 | 69 | 0.30 | 240 |
Magnesium alloy | 1.8 × 10−6 | 45 | 0.35 | 140 |
Plastic | 7.8 × 10−7 | 30 | 0.30 | 50 |
Injury Indicator | GM/RT 2100 | 0° | 10° | 20° | |
---|---|---|---|---|---|
Head | HIC15 | 500 | 149 | 172 | 176 |
a (3 ms)/g | 80 | 65.2 | 62.2 | 62.2 | |
Neck | Upper Tensile FZ/kN | 1.33 | 1.29 | 1.55 | |
MY/N m | 61.6 | 20.8 | 64.4 | ||
Nij | 1.0 | 0.65 | 0.36 | 0.73 | |
Chest | THCC/mm | 63 | 27.0 | 36.6 | 39.0 |
a (3 ms)/g | 60 | 16.3 | 15.4 | 25.0 | |
VC/m s−1 | 1.0 | 0.30 | 0.54 | 0.50 | |
CTI | 1.0 | 0.44 | 0.53 | 0.66 | |
Leg | Left FZ/kN | 0.62 | 0.22 | 0.83 | |
Right FZ/kN | 0.82 | 0.31 | 0.26 |
Injury Indicator | GM/RT 2100 | k (N/mm) | |||||||
---|---|---|---|---|---|---|---|---|---|
1000 | 500 | 400 | 300 | 200 | 100 | 0 | |||
Head | HIC15 | 500 | 178 | 101 | 88.6 | 40.5 | 124 | 64.1 | 24.2 |
a (3 ms)/g | 80 | 72.7 | 30.2 | 43.6 | 30.3 | 50.0 | 29.3 | 26.6 | |
Neck | Upper Tensile FZ/kN | 1.34 | 1.25 | 1.15 | 1.36 | 1.33 | 1.25 | 1.32 | |
MY/Nm | 63.5 | 37.3 | 36.3 | 25.8 | 37.5 | 27.9 | 55.1 | ||
Nij | 1.0 | 0.69 | 0.48 | 0.46 | 0.41 | 0.49 | 0.41 | 0.62 | |
Chest | THCC/mm | 63 | 23.5 | 28.0 | 26.5 | 26.5 | 27.1 | 25.7 | 26.7 |
a (3 ms)/g | 60 | 15.9 | 20.8 | 18.8 | 21.3 | 22.7 | 19.6 | 14.9 | |
VC/ms−1 | 1.0 | 0.24 | 0.33 | 0.30 | 0.32 | 0.31 | 0.24 | 0.31 | |
CTI | 1.0 | 0.40 | 0.50 | 0.47 | 0.49 | 0.52 | 0.47 | 0.42 | |
Leg | Left FZ/kN | 0.52 | 0.75 | 0.65 | 0.36 | 0.94 | 1.27 | 0.85 | |
Right FZ/kN | 1.31 | 0.67 | 0.85 | 0.64 | 0.52 | 0.48 | 0.52 |
Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
f1 | 0.50 | 0.33 | 0.50 | 0.30 | 0.30 |
f2 | 0.30 | 0.33 | 0.40 | 0.50 | 0.20 |
f3 | 0.20 | 0.33 | 0.10 | 0.20 | 0.50 |
optimal solution (N/mm) | 320 | 322 | 322 | 326 | 319 |
Injury Indicator | GM/RT 2100 | k (N/mm) | ||||
---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | |||
Head | HIC15 | 500 | 236 | 227 | 387 | 433 |
a (3 ms)/g | 80 | 46.1 | 73.7 | 64.1 | 72.9 | |
Neck | Upper Tensile FZ/kN | 4.0 | 3.6 | 6.0 | 6.2 | |
MY/N m | 50.3 | 41.5 | 35.9 | 48.7 | ||
Nij | 1.0 | 1.02 | 0.89 | 1.24 | 1.37 | |
Chest | THCC/mm | 63 | 36.7 | 34.6 | 37.3 | 34.9 |
a (3 ms)/g | 60 | 28.6 | 24.8 | 21.1 | 25.0 | |
VC/ms−1 | 1.0 | 0.49 | 0.51 | 0.53 | 0.48 | |
CTI | 1.0 | 0.67 | 0.61 | 0.60 | 0.62 | |
Leg | Left FZ/kN | 0.30 | 0.30 | 0.42 | 0.46 | |
Right FZ/kN | 0.90 | 1.17 | 0.43 | 0.28 |
Injury Indicator | GM/RT 2100 | k (N/mm) | ||||
---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | |||
Head | HIC15 | 500 | 447 | 215 | 288 | 165 |
a (3 ms)/g | 80 | 64.5 | 77.2 | 45.7 | 59.8 | |
Neck | Upper Tensile FZ/kN | 8.5 | 1.69 | 4.03 | 5.9 | |
MY/Nm | 63.4 | 29.7 | 45.9 | 39.4 | ||
Nij | 1.0 | 1.85 | 0.49 | 0.99 | 1.25 | |
Chest | THCC/mm | 63 | 30.8 | 48.9 | 42.5 | 45.3 |
a (3 ms)/g | 60 | 35.3 | 15.3 | 27.7 | 17.9 | |
VC/m s−1 | 1.0 | 0.29 | 0.60 | 0.55 | 0.57 | |
CTI | 1.0 | 0.69 | 0.64 | 0.72 | 0.64 | |
Leg | Left FZ/kN | 0.43 | 0.59 | 0.81 | 0.33 | |
Right FZ/kN | 0.76 | 1.09 | 0.51 | 1.09 |
Number | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
f1 | 0.33 | 0.50 | 0.50 | 0.30 | 0.30 |
f2 | 0.33 | 0.30 | 0.40 | 0.50 | 0.20 |
f3 | 0.33 | 0.20 | 0.10 | 0.20 | 0.50 |
optimal solution (N/mm) | 292 | 293 | 295 | 293 | 290 |
Injury Indicator | GM/RT 2100 | k (N/mm) | |||
---|---|---|---|---|---|
292 | 300 | 322 | |||
Head | HIC15 | 500 | 58.5 | 40.5 | 63.7 |
a (3 ms)/g | 80 | 30.1 | 30.3 | 44.4 | |
Neck | Upper Tensile FZ/kN | 1.06 | 1.36 | 1.29 | |
MY/N m | 28.5 | 25.8 | 31.7 | ||
Nij | 1.0 | 0.38 | 0.41 | 0.44 | |
Chest | THCC/mm | 63 | 24.9 | 26.5 | 28.9 |
a (3 ms)/g | 60 | 21.7 | 21.3 | 22.6 | |
VC/m s−1 | 1.0 | 0.28 | 0.32 | 0.36 | |
CTI | 1.0 | 0.48 | 0.49 | 0.53 | |
Leg | Left FZ/kN | 0.90 | 0.36 | 0.50 | |
Right FZ/kN | 0.66 | 0.64 | 0.62 | ||
Composite injury metric | 0.310 | 0.306 | 0.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Sang, X.; Tian, H.; Liu, L.; Wang, W. Study on the Effect of Seatback Recline Angle and Connection Stiffness on Occupant Injury in High-Speed Train Collisions. Appl. Sci. 2025, 15, 10852. https://doi.org/10.3390/app151910852
Yu F, Sang X, Tian H, Liu L, Wang W. Study on the Effect of Seatback Recline Angle and Connection Stiffness on Occupant Injury in High-Speed Train Collisions. Applied Sciences. 2025; 15(19):10852. https://doi.org/10.3390/app151910852
Chicago/Turabian StyleYu, Fei, Xu Sang, Honglei Tian, Longxi Liu, and Wenbin Wang. 2025. "Study on the Effect of Seatback Recline Angle and Connection Stiffness on Occupant Injury in High-Speed Train Collisions" Applied Sciences 15, no. 19: 10852. https://doi.org/10.3390/app151910852
APA StyleYu, F., Sang, X., Tian, H., Liu, L., & Wang, W. (2025). Study on the Effect of Seatback Recline Angle and Connection Stiffness on Occupant Injury in High-Speed Train Collisions. Applied Sciences, 15(19), 10852. https://doi.org/10.3390/app151910852