Texture Components of the Radiographic Image Assist in the Detection of Periapical Periodontitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Image Processing
2.2.1. Mask Annotation
2.2.2. Extraction of Image Texture Features
- (i)
- Gray-level run-length matrix (GRLM), where contains elements representing the number of occurrences of pixel sequences with grayscale level and length [32]:
- Short-run emphasis (ShrtREmph), second-order inversion moment examining the impact of short runs,
- Long-run emphasis (LngREmph), second-order inversion moment examining the impact of long runs,
- Gray-level nonuniformity (GLevNonUni), coefficient of heterogeneity of gray-level distribution,
- Run-length nonuniformity (RLNonUni), coefficient of heterogeneity of run-length distribution,
- A fraction of the image in runs (Fraction), the proportion of runs in an image,
- Run-length nonuniformity moment (MRLNonUni), variability of the distribution of run lengths in the image,
- Gray-level nonuniformity moment (MGLNonUni), variability of the distribution of gray level in the image,
- (ii)
- The gray-level co-occurrence matrix (GLCM), contains the probabilities of occurrence of pairs of pixels with grayscale levels and for a specified distance (5) between pixels and direction of analysis:
- Angular second moment (AngScMom) measures homogeneity, and a high value indicates constant or repeatable pixel grayscale,
- Contrast (Contrast) measures the difference between the darkest and lightest pixels in an image, and a low value indicates no difference between pixels,
- Correlation (Correlat) describes the degree of correlation between pixels in the image, and a high value means that the pixels have similar values,
- Sum of squares (SumOfSqs) measures the range of pixel values around the mean,
- Inverse difference moment (InvDfMom) describes local homogeneity, and a high value means smaller differences between pixels and greater homogeneity,
- Sum average (SumAverg) determines the average value of the sum of pixel intensity pairs, indicating the general brightness of the image,
- Sum variance (SumVarnc) represents the range of pixel intensity values,
- Sum entropy (SumEntrp) measures disorder in the distribution of intensity sums, and a high value indicates greater unpredictability,
- Entropy (Entropy) measures the disorder and complexity of texture and indicates the degree of randomness,
- Difference variance (DifVarnc) describes the spread of pixel value differences,
- Difference entropy (DifEntrp) measures the texture complexity of the differences between pixels
2.2.3. Image Classification
- The support vector machine (SVM) classifier is a machine learning algorithm that finds a hyperplane in space ( —number of features) that classifies data points. The SVM classifier works by finding the optimal hyperplane that maximizes the distance between the closest points of different classes, called support vectors. This allows the classifier to effectively separate data even when the classes are non-linearly separable in the original space [36]. The SVM classification steps were executed with predefined hyperparameters: a cost parameter C = 10 and a radial basis function (RBF) kernel with gamma = 0.01; numerical tolerance was set to 0.001 (https://scikit-learn.org, accessed on 2 June 2025).
- The k-nearest neighbors classifier (kNN) is a simple classifier that assigns a new point in feature space to a specific class based on the distance from the nearest neighbors. This distance is interpreted as the inverse of a similarity measure. Using a distance metric, such as Euclidean, kNN calculates the distance between the new point and other points in the training set. It then assigns the new point to the class to which most of its nearest neighbors belong. The number determines the number of neighbors considered in the classification [36]. The kNN classification steps were executed with predefined hyperparameters, k = 5, using the Euclidean distance metric and uniform weighting (https://scikit-learn.org, accessed on 2 June 2025).
- The decision tree classifier (DT) is a popular classification algorithm used in models that combine multiple classifiers [36]. The basic idea is to recursively divide a data set into smaller subsets based on how this division will affect the final class selection. The DT classification steps were executed with predefined hyperparameters; the maximum depth of the tree = 4, using the Gini function to measure the quality of a split (https://scikit-learn.org, accessed on 2 June 2025).
- The random forest classifier (RF) is a set of decision trees. The idea of its construction is to train a group of single decision tree classifiers, each for a separate subset of data [36]. Predictions from individual trees are used in majority voting, which aims to select the class that received the most votes. The RF classification steps were executed with predefined hyperparameters; the number of trees in the forest = 100 (https://scikit-learn.org, accessed on 2 June 2025).
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.V.; Emmadi, P.; Namasivayam, A.; Thyegarajan, R.; Rajaraman, V. The periodontal–endodontic continuum: A review. J. Conserv. Dent. Endod. 2008, 11, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Hegde, J.; Prakash, V.; Srirekha, A. Concise Conservative Dentistry and Endodontics-E Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bahekar, A.A.; Singh, S.; Saha, S.; Molnar, J.; Arora, R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: A meta-analysis. Am. Heart J. 2007, 154, 830–837. [Google Scholar] [CrossRef]
- Rahimi, A.; Afshari, Z. Periodontitis and cardiovascular disease: A literature review. ARYA Atheroscler. 2021, 17, 1. [Google Scholar]
- Chapple, I.L.; Hirschfeld, J.; Cockwell, P.; Dietrich, T.; Sharma, P. Interplay between periodontitis and chronic kidney disease. Nat. Rev. Nephrol. 2025, 21, 226–240. [Google Scholar] [CrossRef]
- Araújo, V.M.A.; Melo, I.M.; Lima, V. Relationship between periodontitis and rheumatoid arthritis: Review of the literature. Mediat. Inflamm. 2015, 2015, 259074. [Google Scholar] [CrossRef]
- Orstavik, D. Essential Endodontology: Prevention and Treatment of Apical Periodontitis; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Graunaite, I.; Lodiene, G.; Maciulskiene, V. Pathogenesis of apical periodontitis: A literature review. J. Oral Maxillofac. Res. 2012, 2, e1. [Google Scholar] [CrossRef]
- Braz-Silva, P.H.; Bergamini, M.L.; Mardegan, A.P.; De Rosa, C.S.; Hasseus, B.; Jonasson, P. Inflammatory profile of chronic apical periodontitis: A literature review. Acta Odontol. Scand. 2019, 77, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Boreak, N.; Hakami, A.; Hakami, S.; Nahari, H.; Alhakami, M.; Al Dira, M.; Mahdali, H.; Kariri, S.F. A systematic review of traditional radiology: Conservative therapy in endodontics. Saudi J. Oral. Dent. Res. 2022, 7, 317–323. [Google Scholar] [CrossRef]
- Rotstein, I.; Simon, J.H. Diagnosis, prognosis and decision-making in the treatment of combined periodontal-endodontic lesions. Periodontology 2000 2004, 34, 165–203. [Google Scholar] [CrossRef]
- Karamifar, K.; Tondari, A.; Saghiri, M.A. Endodontic periapical lesion: An overview on the etiology, diagnosis and current treatment modalities. Eur. Endod. J. 2020, 5, 54. [Google Scholar] [CrossRef]
- Nardi, C.; Calistri, L.; Pradella, S.; Desideri, I.; Lorini, C.; Colagrande, S. Accuracy of orthopantomography for apical periodontitis without endodontic treatment. J. Endod. 2017, 43, 1640–1646. [Google Scholar] [CrossRef]
- Estrela, C.; Bueno, M.R.; Leles, C.R.; Azevedo, B.; Azevedo, J.R. Accuracy of cone beam computed tomography and panoramic and periapical radiography for detection of apical periodontitis. J. Endod. 2008, 34, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Nardi, C.; Calistri, L.; Pietragalla, M.; Vignoli, C.; Lorini, C.; Berti, V.; Mungai, F.; Colagrande, S. Electronic processing of digital panoramic radiography for the detection of apical periodontitis. La Radiol. Medica 2020, 125, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Dawood, A.; Mannocci, F.; Wilson, R.; Pitt Ford, T. Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography. Int. Endod. J. 2009, 42, 507–515. [Google Scholar] [CrossRef]
- Bender, I.; Seltzer, S. Roentgenographic and direct observation of experimental lesions in bone: I. J. Endod. 2003, 29, 702–706. [Google Scholar] [CrossRef]
- Arias, E.; Huang, Y.-H.; Zhao, L.; Seelaus, R.; Patel, P.; Cohen, M. Virtual surgical planning and three-dimensional printed guide for soft tissue correction in facial asymmetry. J. Craniofacial Surg. 2019, 30, 846–850. [Google Scholar] [CrossRef]
- Garlapati, K.; DB, G.B.; Chaitanya, N.C.; Guduru, H.; Rembers, A.; Soni, P. Evaluation of preference and purpose of utilisation of cone beam computed tomography (CBCT) compared to orthopantomogram (OPG) by dental practitioners—A cross-sectional study. Pol. J. Radiol. 2017, 82, 248–251. [Google Scholar] [CrossRef]
- Kaasalainen, T.; Ekholm, M.; Siiskonen, T.; Kortesniemi, M. Dental cone beam CT: An updated review. Phys. Medica 2021, 88, 193–217. [Google Scholar] [CrossRef]
- Davies, A.; Mannocci, F.; Mitchell, P.; Andiappan, M.; Patel, S. The detection of periapical pathoses in root filled teeth using single and parallax periapical radiographs versus cone beam computed tomography—A clinical study. Int. Endod. J. 2015, 48, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Mostafapoor, M.; Hemmatian, S. Evaluation of the accuracy values of cone-beam CT regarding apical periodontitis: A systematic review and meta-analysis. Oral Radiol. 2022, 38, 309–314. [Google Scholar] [CrossRef]
- Kruse, C.; Spin-Neto, R.; Reibel, J.; Wenzel, A.; Kirkevang, L.-L. Diagnostic validity of periapical radiography and CBCT for assessing periapical lesions that persist after endodontic surgery. In Dentomaxillofacial Radiology; Oxford University Press: Oxford, UK, 2017; Volume 46. [Google Scholar] [CrossRef]
- Chang, L.; Umorin, M.; Augsburger, R.A.; Glickman, G.N.; Jalali, P. Periradicular lesions in cancellous bone can be detected radiographically. J. Endod. 2020, 46, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Nardi, C.; Calistri, L.; Grazzini, G.; Desideri, I.; Lorini, C.; Occhipinti, M.; Mungai, F.; Colagrande, S. Is panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis? J. Endod. 2018, 44, 1500–1508. [Google Scholar] [CrossRef]
- Kazimierczak, W.; Wajer, R.; Wajer, A.; Kiian, V.; Kloska, A.; Kazimierczak, N.; Janiszewska-Olszowska, J.; Serafin, Z. Periapical lesions in panoramic radiography and CBCT imaging-assessment of AI’s diagnostic accuracy. J. Clin. Med. 2024, 13, 2709. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.C.; de Araújo, E.C.; Nussi, A.D.; Bechara, N.; Sarmento, D.; Oliveira, M.S.; Santamaria, M.P.; Costa, A.L.F.; Lopes, S. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J. Periodontol. 2020, 91, 1159–1166. [Google Scholar] [CrossRef]
- Won, J.; Huang, P.-C.; Spillman Jr, D.R.; Chaney, E.J.; Adam, R.; Klukowska, M.; Barkalifa, R.; Boppart, S.A. Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. J. Biomed. Opt. 2020, 25, 116011. [Google Scholar] [CrossRef]
- Juerchott, A.; Pfefferle, T.; Flechtenmacher, C.; Mente, J.; Bendszus, M.; Heiland, S.; Hilgenfeld, T. Differentiation of periapical granulomas and cysts by using dental MRI: A pilot study. Int. J. Oral Sci. 2018, 10, 17. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Klepaczko, A. MaZda—A framework for biomedical image texture analysis and data exploration. In Biomedical Texture Analysis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 315–347. [Google Scholar]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-a software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Tang, X. Texture information in run-length matrices. IEEE Trans. Image Process. 1998, 7, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Bębas, E.; Borowska, M.; Derlatka, M.; Oczeretko, E.; Hładuński, M.; Szumowski, P.; Mojsak, M. Machine-learning-based classification of the histological subtype of non-small-cell lung cancer using MRI texture analysis. Biomed. Signal Process. Control 2021, 66, 102446. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Fleiner, J.; Hannig, C.; Schulze, D.; Stricker, A.; Jacobs, R. Digital method for quantification of circumferential periodontal bone level using cone beam CT. Clin. Oral Investig. 2013, 17, 389–396. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT texture analysis: Definitions, applications, biologic correlates, and challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Pociask, E.; Nurzynska, K.; Obuchowicz, R.; Bałon, P.; Uryga, D.; Strzelecki, M.; Izworski, A.; Piórkowski, A. Differential diagnosis of cysts and granulomas supported by texture analysis of intraoral radiographs. Sensors 2021, 21, 7481. [Google Scholar] [CrossRef]
GRLM Texture Features | Healthy | Periodontitis | p-Value |
---|---|---|---|
HRLNonUni | 113.00 ± 87.05 | 372.34 ± 547.23 | <0.0001 |
HGLevNonUn | 144.31 ± 30.56 | 255.79 ± 244.23 | 0.0107 |
HLngREmph | 19.96 ± 13.55 | 14.03 ± 8.44 | 0.0003 |
HShrtREmp | 0.42 ± 0.10 | 0.47 ± 0.10 | <0.0001 |
HFraction | 0.34 ± 0.10 | 0.39 ± 0.10 | <0.0001 |
HMRLNonUni | 0.22 ± 0.08 | 0.25 ± 0.08 | <0.0001 |
HMGLevNonUn | 0.32 ± 0.06 | 0.21 ± 0.06 | <0.0001 |
VRLNonUni | 118.47 ± 85.69 | 343.40 ± 521.26 | <0.0001 |
VShrtREmp | 0.43 ± 0.10 | 0.46 ± 0.10 | 0.0038 |
VMGLevNonUn | 0.32 ± 0.06 | 0.21 ± 0.07 | <0.0001 |
NRLNonUni | 187.27 ± 111.08 | 563.07 ± 761.39 | <0.0001 |
NShrtREmp | 0.53 ± 0.10 | 0.57 ± 0.09 | 0.0483 |
NFraction | 0.43 ± 0.11 | 0.47 ± 0.10 | 0.0003 |
NMRLNonUni | 0.29 ± 0.09 | 0.33 ± 0.09 | 0.003 |
NMGLevNonUn | 0.32 ± 0.06 | 0.21 ± 0.07 | 0.0011 |
ZRLNonUni | 192.90 ± 115.42 | 551.13 ± 774.18 | <0.0001 |
ZShrtREmp | 0.53 ± 0.10 | 0.56 ± 0.10 | <0.0001 |
ZMRLNonUni | 0.30 ± 0.09 | 0.32 ± 0.10 | 0.0072 |
ZMGLevNonUn | 0.32 ± 0.06 | 0.21 ± 0.06 | 0.0402 |
GLCM Texture Features | Healthy | Periodontitis | p-Value |
---|---|---|---|
H5AngScMom | 0.16 ± 0.06 | 0.08 ± 0.04 | <0.0001 |
H5Contrast | 0.96 ± 1.00 | 1.52 ± 1.26 | <0.0001 |
H5Correlat | 0.28 ± 0.20 | 0.52 ± 0.24 | <0.0001 |
H5SumOfSqs | 0.68 ± 0.51 | 1.95 ± 1.47 | <0.0001 |
H5InvDfMom | 0.70 ± 0.08 | 0.63 ± 0.09 | <0.0001 |
H5SumAverg | 31.89 ± 7.00 | 26.02 ± 6.36 | 0.0001 |
H5SumVarnc | 1.74 ± 1.19 | 6.30 ± 5.18 | <0.0001 |
H5SumEntrp | 0.69 ± 0.11 | 0.92 ± 0.16 | <0.0001 |
H5Entropy | 0.96 ± 0.20 | 1.27 ± 0.24 | <0.0001 |
H5DifVarnc | 0.46 ± 0.35 | 0.69 ± 0.50 | <0.0001 |
H5DifEntrp | 0.41 ± 0.08 | 0.48 ± 0.10 | <0.0001 |
V5AngScMom | 0.16 ± 0.05 | 0.08 ± 0.04 | <0.0001 |
V5Contrast | 1.01 ± 0.95 | 1.53 ± 1.28 | <0.0001 |
V5Correlat | 0.24 ± 0.19 | 0.53 ± 0.25 | <0.0001 |
V5SumOfSqs | 0.68 ± 0.53 | 1.96 ± 1.46 | <0.0001 |
V5InvDfMom | 0.69 ± 0.08 | 0.63 ± 0.09 | <0.0001 |
V5SumAverg | 31.88 ± 6.99 | 26.00 ± 6.37 | 0.0001 |
V5SumVarnc | 1.72 ± 1.29 | 6.30 ± 5.18 | <0.0001 |
V5SumEntrp | 0.69 ± 0.11 | 0.93 ± 0.16 | <0.0001 |
V5Entropy | 0.97 ± 0.19 | 1.27 ± 0.23 | <0.0001 |
V5DifVarnc | 0.48 ± 0.34 | 0.69 ± 0.53 | <0.0001 |
V5DifEntrp | 0.42 ± 0.08 | 0.47 ± 0.10 | <0.0001 |
N5AngScMom | 0.16 ± 0.05 | 0.08 ± 0.04 | <0.0001 |
N5Contrast | 1.04 ± 0.99 | 1.87 ± 1.61 | <0.0001 |
N5Correlat | 0.20 ± 0.20 | 0.43 ± 0.27 | <0.0001 |
N5SumOfSqs | 0.65 ± 0.51 | 1.92 ± 1.45 | <0.0001 |
N5InvDfMom | 0.68 ± 0.08 | 0.60 ± 0.10 | <0.0001 |
N5SumAverg | 31.88 ± 7.00 | 26.01 ± 6.39 | 0.0001 |
N5SumVarnc | 1.58 ± 1.16 | 5.79 ± 4.82 | <0.0001 |
N5SumEntrp | 0.67 ± 0.11 | 0.91 ± 0.16 | <0.0001 |
N5Entropy | 0.96 ± 0.19 | 1.29 ± 0.24 | <0.0001 |
N5DifVarnc | 0.48 ± 0.35 | 0.78 ± 0.56 | <0.0001 |
N5DifEntrp | 0.42 ± 0.08 | 0.50 ± 0.10 | <0.0001 |
Z5AngScMom | 0.15 ± 0.05 | 0.08 ± 0.04 | <0.0001 |
Z5Contrast | 1.09 ± 1.10 | 1.78 ± 1.48 | <0.0001 |
Z5Correlat | 0.17 ± 0.16 | 0.44 ± 0.27 | <0.0001 |
Z5SumOfSqs | 0.66 ± 0.52 | 1.91 ± 1.44 | <0.0001 |
Z5InvDfMom | 0.67 ± 0.07 | 0.61 ± 0.10 | <0.0001 |
Z5SumAverg | 31.89 ± 7.01 | 25.99 ± 6.32 | 0.0001 |
Z5SumVarnc | 1.56 ± 1.09 | 5.88 ± 4.88 | <0.0001 |
Z5SumEntrp | 0.67 ± 0.11 | 0.91 ± 0.16 | <0.0001 |
Z5Entropy | 0.97 ± 0.20 | 1.28 ± 0.24 | <0.0001 |
Z5DifVarnc | 0.50 ± 0.38 | 0.77 ± 0.54 | <0.0001 |
Z5DifEntrp | 0.43 ± 0.08 | 0.50 ± 0.10 | <0.0001 |
GRLM Texture Features | Healthy | Periodontitis | p-Value |
---|---|---|---|
RLNonUni | 76.58 ± 49.68 | 228.89 ± 324.30 | <0.0001 |
GLevNonUn | 84.02 ± 15.34 | 140.52 ± 132.63 | 0.0026 |
LngREmph | 14.73 ± 9.14 | 11.73 ± 6.62 | 0.001 |
ShrtREmp | 0.48 ± 0.10 | 0.52 ± 0.09 | <0.0001 |
Fraction | 0.39 ± 0.10 | 0.43 ± 0.10 | <0.0001 |
MRLNonUni | 0.26 ± 0.08 | 0.29 ± 0.08 | <0.0001 |
MGLevNonUn | 0.32 ± 0.06 | 0.21 ± 0.06 | <0.0001 |
GLCM Texture Features | Healthy | Periodontitis | p-Value |
---|---|---|---|
AngScMom | 0.16 ± 0.05 | 0.08 ± 0.04 | <0.0001 |
Contrast | 1.03 ± 1.00 | 1.68 ± 1.33 | <0.0001 |
Correlat | 0.23 ± 0.18 | 0.48 ± 0.25 | <0.0001 |
SumOfSqs | 0.67 ± 0.52 | 1.94 ± 1.45 | <0.0001 |
InvDfMom | 0.69 ± 0.08 | 0.62 ± 0.09 | <0.0001 |
SumAverg | 31.88 ± 7.00 | 26.01 ± 6.36 | <0.0001 |
SumVarnc | 1.65 ± 1.18 | 6.07 ± 4.98 | <0.0001 |
SumEntrp | 0.68 ± 0.11 | 0.92 ± 0.16 | <0.0001 |
Entropy | 0.96 ± 0.19 | 1.28 ± 0.23 | <0.0001 |
DifVarnc | 0.48 ± 0.36 | 0.73 ± 0.51 | <0.0001 |
DifEntrp | 0.42 ± 0.08 | 0.49 ± 0.10 | <0.0001 |
Variants | Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Features in directions | SVM | 0.86 | 0.88 | 0.84 | 0.86 |
[0.74; 0.97] | [0.77; 1.00] | [0.67; 0.93] | [0.71; 0.97] | ||
kNN | 0.86 | 0.94 | 0.79 | 0.85 | |
[0.80; 0.90] | [0.76; 1.00] | [0.67; 0.87] | [0.80; 0.90] | ||
RF | 0.82 | 0.82 | 0.84 | 0.82 | |
[0.74; 0.90] | [0.7; 0.88] | [0.67; 0.93] | [0.71; 0.90] | ||
DT | 0.82 | 0.82 | 0.84 | 0.83 | |
[0.74; 0.93] | [0.7; 0.93] | [0.69; 0.93] | [0.73; 0.93] | ||
Mean features | SVM | 0.84 | 0.86 | 0.83 | 0.84 |
[0.81; 087] | [0.78; 0.92] | [0.66; 0.93] | [0.77; 0.88] | ||
kNN | 0.85 | 0.92 | 0.79 | 0.84 | |
[0.77; 0.90] | [0.72; 1.00] | [0.67; 0.87] | [0.79; 0.90] | ||
RF | 0.82 | 0.81 | 0.83 | 0.82 | |
[0.77; 0.84] | [0.76; 0.87] | [0.73; 0.87] | [0.76; 0.84] | ||
DT | 0.82 | 0.82 | 0.84 | 0.83 | |
[0.65; 0.93] | [0.61; 0.93] | [0.73; 0.93] | [0.67; 0.93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska, M.; Antonowicz, B.; Magnuszewska, E.; Woźniak, Ł.; Łukaszuk, K.; Borys, J. Texture Components of the Radiographic Image Assist in the Detection of Periapical Periodontitis. Appl. Sci. 2025, 15, 10521. https://doi.org/10.3390/app151910521
Borowska M, Antonowicz B, Magnuszewska E, Woźniak Ł, Łukaszuk K, Borys J. Texture Components of the Radiographic Image Assist in the Detection of Periapical Periodontitis. Applied Sciences. 2025; 15(19):10521. https://doi.org/10.3390/app151910521
Chicago/Turabian StyleBorowska, Marta, Bożena Antonowicz, Ewelina Magnuszewska, Łukasz Woźniak, Kamila Łukaszuk, and Jan Borys. 2025. "Texture Components of the Radiographic Image Assist in the Detection of Periapical Periodontitis" Applied Sciences 15, no. 19: 10521. https://doi.org/10.3390/app151910521
APA StyleBorowska, M., Antonowicz, B., Magnuszewska, E., Woźniak, Ł., Łukaszuk, K., & Borys, J. (2025). Texture Components of the Radiographic Image Assist in the Detection of Periapical Periodontitis. Applied Sciences, 15(19), 10521. https://doi.org/10.3390/app151910521