Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, M.M.; Hossain, M.M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56, 14900–14942. [Google Scholar] [CrossRef] [PubMed]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select. 2023, 4, 486. [Google Scholar] [CrossRef]
- Greco, E.; De Spirt, A.; Miani, A.; Piscitelli, P.; Trombin, R.; Barbieri, P.; Marín, E. Nanomaterials in photocatalysis: An in-depth analysis of their role in enhancing indoor air quality. Appl. Sci. 2025, 15, 1629. [Google Scholar] [CrossRef]
- Iborra-Torres, A.; Hus, M.; Nguyen, K.; Vamvakeros, A.; Sajjad, M.T.; Dunn, S.; Mertens, M.; Jacques, S.; Beale, A.M.; Likozar, B.; et al. 3D printed SrNbO2N photocatalyst for degradation of organic pollutants in water. Mater. Adv. 2023, 4, 3461–3472. [Google Scholar] [CrossRef]
- Ma, J.; Cai, B.; Zhang, S.; Jian, T.; De Yoreo, T.J.; Chen, C.L.; Baneyx, F. Nanoparticle-mediated assembly of peptoid nanosheets functionalized with solid-binding proteins: Designing heterostructures for hierarchy. Nano Lett. 2021, 21, 1636–1642. [Google Scholar] [CrossRef]
- Bernardo, M.S.; Villanueva, P.G.; Jardiel, T.; Calatayud, D.G.; Peiteado, M.; Caballero, A.C. Ga-doped ZnO self-assembled nanostructures obtained by microwave-assisted hydrothermal synthesis: Effect on morphology and optical properties. J. Alloys Compd. 2017, 722, 920–927. [Google Scholar] [CrossRef]
- Yuan, X.; Sunyer-Pons, N.; Terrado, A.; León, J.L.; Hadziioannou, G.; Cloutet, E.; Villa, K. 3D-printed organic conjugated trimer for visible-light-driven photocatalytic applications. ChemSusChem 2023, 16, e202202228. [Google Scholar] [CrossRef]
- Gumiel, C.; Jardiel, T.; Calatayud, D.G.; Vranken, T.; Van Bael, M.K.; Hardy, A.; Calzada, M.L.; Jiménez, R.; García-Hernández, M.; Mompeán, F.J.; et al. Nanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO3-based thin films produced by aqueous chemical solution deposition. J. Mater. Chem. C 2020, 8, 4234–4245. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat. Rev. Chem. 2020, 4, 638–656. [Google Scholar] [CrossRef]
- Naik, R.R.; Stringer, S.J.; Agarwal, G.; Jones, S.E.; Stone, M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002, 1, 169–172. [Google Scholar] [CrossRef]
- Levin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2022, 4, 615–634. [Google Scholar] [CrossRef]
- Sun, L.; Li, P.; Chen, C. Molecular recognition characteristics of co-assembled peptides on atomically flat graphite surfaces. J. Colloid Interf. Sci. 2025, 679, 435–445. [Google Scholar] [CrossRef]
- Bansal, R.; Care, A.; Lord, M.S.; Walsh, T.R.; Sunna, A. Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides. New Biotechnol. 2019, 52, 9–18. [Google Scholar] [CrossRef]
- Yucesoy, D.T.; Akkineni, S.; Tamereler, C.; Hinds, B.J.; Sarikaya, M. Solid-binding peptide-guided spatially directed immobilization of kinetically matched enzyme cascades in membrane nanoreactors. ACS Omega 2021, 6, 27129–27139. [Google Scholar] [CrossRef]
- Alvisi, N.; de Vries, R. Biomedical applications of solid-binding peptides and proteins. Mater. Today Bio 2023, 19, 100580. [Google Scholar] [CrossRef]
- Jardiel, T.; Peiteado, M.; Castellanos-Aliaga, A.; Caballero, A.C.; Calatayud, D.G. Peptide-driven bio-assisted removal of metal oxide nanoparticles from an aqueous suspension: A novel strategy for water remediation. J. Clean. Prod. 2021, 285, 124852. [Google Scholar] [CrossRef]
- Bielan, Z.; Dudziak, S.; Kubiak, A.; Kowalska, E. Application of spinel and hexagonal ferrites in heterogeneous photocatalysis. Appl. Sci. 2021, 11, 10160. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Z.; Liu, H.; Zhang, S.; Wang, P.; Lu, J.; Tong, Y. Heterojunction architecture of N-Doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Adv. Funct. Mater. 2019, 29, 1903490. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Y.; Jiang, Z.; Xu, F.; Xian, Q.; Sun, C.; Tong, Q.; Zou, W.; Duan, X.; Wang, S. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Appl. Catal. B-Environ. 2019, 259, 118072. [Google Scholar] [CrossRef]
- Calatayud, D.G.; Flores, R.M.; Castellanos-Aliaga, A.; Peiteado, M.; Palomares, F.J.; Caballero, A.C.; Jardiel, T. Tailoring the visible light photoactivity of un-doped defective TiO2 anatase nanoparticles through a simple two-step solvothermal process. Nanotechnology 2020, 31, 045603. [Google Scholar] [CrossRef]
- Alcázar-Medina, T.; Chairez-Hernández, I.; Lemus-Santana, A.A.; Núñez-Núñez, C.M.; Proal-Nájera, J.B. Amoxicillin degradation by TiO2 P25 solar heterogeneous photocatalysis: Influence of pH and oxidizing agent H2O2 addition. Appl. Sci. 2023, 13, 7857. [Google Scholar] [CrossRef]
- Das, A.; Liu, D.; Wu, Y.; Abzakh, B.A.; Madhumitha, R.; Preethi, M.; Kazakova, E.A.; Vasenko, A.S.; Prezhado, O.V. Origin of the improved photoelectrochemical and photocatalytic activity in a ZnO–TiO2 nanohybrid revealed by experimental and density functional theory studies. J. Phys. Chem. Lett. 2024, 15, 7524–7532. [Google Scholar] [CrossRef] [PubMed]
- Andronic, L.; Isac, L.; Cazan, C.; Anesca, A. Simultaneous adsorption and photocatalysis processes based on ternary TiO2–CuxS–fly ash hetero-structures. Appl. Sci. 2020, 10, 8070. [Google Scholar] [CrossRef]
- Vreuls, C.; Zocchi, G.; Genin, A.; Archambeau, C.; Martial, J.; Van de Weerdt, C. Inorganic-binding peptides as tools for surface quality control. J. Inorg. Biochem. 2010, 104, 1013–1021. [Google Scholar] [CrossRef]
- Whaley, S.R.; English, D.S.; Hu, E.L.; Barbara, P.F.; Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000, 405, 665–668. [Google Scholar] [CrossRef]
- Heinz, H. Understanding Molecular Recognition on Metallic and Oxidic Nanostructures from a Perspective of Computer Simulation and Theory. In Bio-Inspired Nanotechnology; Knecht, M., Walsh, T., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Calatayud, D.G.; Jardiel, T.; Peiteado, M.; Illas, F.; Giamello, E.; Palomares, F.J.; Fernández-Hevia, D.; Caballero, A.C. Synthesis and characterization of blue faceted anatase nanoparticles through extensive fluorine lattice doping. J. Phys. Chem. C 2015, 119, 21243–21250. [Google Scholar] [CrossRef]
- Lima, L.; Caldas, L.S.; Ali, A.; Barreto, J.; Freitas, R.; Mazzarella, A.; Felix, G.; Carozo, V.; Stavale, F. Growth and Raman spectroscopy of ultrathin ZnO(0001) films on Ag(001). Surf. Sci. 2021, 704, 121748. [Google Scholar] [CrossRef]
- Freire, P.T.C.; Barboza, F.M.; Lima, J.A.; Melo, F.E.A.; Filho, J.M. Raman Spectroscopy of Amino Acid Crystals; Raman Spectroscopy and Applications; Maaz, K., Ed.; IntechOpen: London, UK, 2017; pp. 202–224. [Google Scholar]
- Calatayud, D.G.; Jardiel, T.; Rodríguez, M.; Peiteado, M.; Fernández-Hevia, D.; Caballero, A.C. Soft solution fluorine-free synthesis of anatase nanoparticles with tailored morphology. Ceram. Int. 2013, 39, 1195–1202. [Google Scholar] [CrossRef]
- Liu, X.; Du, G.; Li, M. True photoreactivity origin of Ti3+-doped anatase TiO2 crystals with respectively dominated exposed {001}, {101}, and {100} facets. ACS Omega 2019, 4, 14902–14912. [Google Scholar] [CrossRef]
- Calatayud, D.G.; Jardiel, T.; Peiteado, M.; Fernández-Rodríguez, C.; Espino Estévez, R.; Doña Rodríguez, J.M.; Palomares, F.J.; Rubio, F.; Fernández-Hevia, D.; Caballero, A.C. Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent. J. Mater. Chem. A 2013, 1, 14358–14367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellanos-Aliaga, A.; San-Miguel, L.; Cama, M.; Calatayud, D.G.; Caballero, A.C.; Jardiel, T.; Peiteado, M. Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides. Appl. Sci. 2025, 15, 9399. https://doi.org/10.3390/app15179399
Castellanos-Aliaga A, San-Miguel L, Cama M, Calatayud DG, Caballero AC, Jardiel T, Peiteado M. Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides. Applied Sciences. 2025; 15(17):9399. https://doi.org/10.3390/app15179399
Chicago/Turabian StyleCastellanos-Aliaga, Ana, Laura San-Miguel, Marta Cama, David G. Calatayud, Amador C. Caballero, Teresa Jardiel, and Marco Peiteado. 2025. "Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides" Applied Sciences 15, no. 17: 9399. https://doi.org/10.3390/app15179399
APA StyleCastellanos-Aliaga, A., San-Miguel, L., Cama, M., Calatayud, D. G., Caballero, A. C., Jardiel, T., & Peiteado, M. (2025). Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides. Applied Sciences, 15(17), 9399. https://doi.org/10.3390/app15179399