Structural Analysis for Earthquake-Resistant Design of Buildings: Closing Editorial
1. Background
2. Highlights from the Special Issue
3. Main Takeaways
- 1.
- Contribution N.1—Hysteresis with variable pinching (damage simulation).Rabiepour, M.; Zhou, C.; Chase, J.G. A hysteresis model incorporating varying pinching stiffness and spread for enhanced structural damage simulation. Appl. Sci. 2025, 15, 724. https://doi.org/10.3390/app15020724.
- 2.
- Contribution N.2—RC shear walls on sloping terrain (FEMA P695).Vielma, J.C.; Vielma-Quintero, J.C.; Diaz-Segura, E.G. Evaluation of seismic design factors in reinforced concrete shear wall buildings located on sloping terrain using FEMA P695 methodology. Appl. Sci. 2025, 15, 6209. https://doi.org/10.3390/app15116209.
- 3.
- Contribution N.3—BI–SSI key parameters (closed-form guidance).Forcellini, D. Key parameters to model the mutual effects between base isolation (BI) and soil–structure interaction (SSI). Appl. Sci. 2024, 14, 11703. https://doi.org/10.3390/app142411703.
- 4.
- Contribution N.4—Multiaxial (incl. vertical) effects on mega-sub isolated structures.Yan, X.; Liu, J.; Lin, W.; Lan, G.; Mao, H. Dynamic response analysis of mega-sub isolated structures under multiaxial earthquakes. Appl. Sci. 2023, 13, 8692. https://doi.org/10.3390/app13158692.
- 5.
- Contribution N.5—Inerter-equipped auxiliary mass with soil interaction.Di Egidio, A.; Contento, A. Seismic benefits of a vibrating mass equipped with an inerter on frame structures due to soil interaction. Appl. Sci. 2024, 14, 11156. https://doi.org/10.3390/app142311156.
- 6.
- Contribution N.6—Hybrid “M & P” damage identification for braced steel frames.Makarios, T.; Bakalis, A.; Efthymiou, E. Seismic damage assessment of existing planar steel X- or V-braced frames using the hybrid “M and P” technique. Appl. Sci. 2024, 14, 8638. https://doi.org/10.3390/app14198638.
- 7.
- Contribution N.7—Monitored strengthening of a soft-story building (open ground floor).Iskhakov, I.;Yehuda, S.; Ribakov, Y. Methodology and monitoring of the strengthening and upgrading of a four-story building with an open ground floor in a seismic region. Appl. Sci. 2024, 14, 7581. https://doi.org/10.3390/app14177581.
- 8.
- Contribution N.8—Material quality vs. damage in the 2023 Kahramanmaraş earthquakes.Zengin, B.; Aydin, F. The effect of material quality on buildings moderately and heavily damaged by the Kahramanmaraş earthquakes. Appl. Sci. 2023, 13, 10668. https://doi.org/10.3390/app131910668.
- 9.
- Contribution N.9—Gölbaşı (Adıyaman) geotechnical & structural damages, 2023 sequence.Akar, F.; Işık, E.; Avcil, F.; Büyüksaraç, A.; Arkan, E.; İzol, R. Geotechnical and structural damages caused by the 2023 Kahramanmaraş earthquakes in Gölbaşı (Adıyaman). Appl. Sci. 2024, 14, 2165. https://doi.org/10.3390/app14052165.
- 10.
- Contribution N.10—CCSS (CFT composite) retrofitting for RC buildings.Baek, H.-J.; Jung, J.-S.; Lee, K.-S.; Lee, B.-G. Seismic performance evaluation of reinforced concrete buildings retrofitted with a new concrete filled tube composite strengthening system. Appl. Sci. 2023, 13, 13231. https://doi.org/10.3390/app132413231.
- 11.
- Contribution N.11—Hooked stirrups: ductility & energy dissipation gains.Karasin, I.B. Analytic investigation of hooked stirrups on seismic behavior of reinforced concrete 3D frame buildings. Appl. Sci. 2023, 13, 11590. https://doi.org/10.3390/app132011590.
- 12.
- Contribution N.12—Pushover-based evaluation of an existing RC hospital.Kuria, K.K.; Kegyes-Brassai, O.K. Nonlinear static analysis for seismic evaluation of existing RC hospital building. Appl. Sci. 2023, 13, 11626. https://doi.org/10.3390/app132111626.
- 13.
- Contribution N.13—ML proxies (RF/ANN) for NSC dynamic amplification factors.Vyshnavi, P.; Challagulla, S.P.; Adamu, M.; Vicencio, F.; Jameel, M.; Ibrahim, Y.E.; Ahmed, O.S. Utilizing artificial neural networks and random forests to forecast the dynamic amplification factors of non-structural components. Appl. Sci. 2023, 13, 11329. https://doi.org/10.3390/app132011329.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamburger, R.O.; Moehle, J.P.; Baker, J.W.; Bray, J.D.; Crouse, C.B.; Deierlein, G.G.; Hooper, J.; Lew, M.; Maffei, J.; Mahin, S.A.; et al. Guidelines for Performance-Based Seismic Design of Tall Buildings, Version 2.03. In PEER Report 2017/06; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2017. [Google Scholar]
- Stewart, J.P.; Parker, G.A.; Harmon, J.A.; Atkinson, G.M.; Boore, D.M.; Darragh, R.B.; Silva, W.J.; Hashash, Y.M.A. Expert Panel Recommendations for Ergodic Site Amplification in Central and Eastern North America. In PEER Report 2017/04; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2017. [Google Scholar]
- Ibarra, L.F.; Medina, R.A.; Krawinkler, H. Hysteretic models that incorporate strength and stiffness deterioration. Earthq. Eng. Struct. Dyn. 2005, 34, 1489–1511. [Google Scholar] [CrossRef]
- Lignos, D.G.; Krawinkler, H. Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading. J. Struct. Eng. 2011, 137, 1291–1302. [Google Scholar] [CrossRef]
- Stewart, J.; Crouse, C.B.; Hutchinson, T.C.; Lizundia, B.; Naeim, F.; Ostadan, F. Soil–Structure Interaction for Building Structures. In Technical Report NIST GCR 12-917-21; NIST: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Aloisio, A.; Rosso, M.M.; Di Battista, L.; Quaranta, G. Machine-learning-aided regional post-seismic usability prediction of buildings: 2016–2017 Central Italy earthquakes. J. Build. Eng. 2024, 91, 109526. [Google Scholar] [CrossRef]
- Aloisio, A.; De Santis, Y.; Irti, F.; Pasca, D.P.; Scimia, L.; Fragiacomo, M. Machine learning predictions of code-based seismic vulnerability for reinforced concrete and masonry buildings: Insights from a 300-building database. Eng. Struct. 2024, 301, 117295. [Google Scholar] [CrossRef]
- Sattar, S.; Kersting, R.; Arendt, L.; Bonowitz, D.; Comerio, M.; Davis, C.; Deierlein, G.G.; Johnson, K.J. Recommended Options for Improving the Built Environment for Post-Earthquake Reoccupancy and Functional Recovery Time. In Technical Report NIST SP 1254/FEMA P-2090; National Institute of Standards and Technology/FEMA: Gaithersburg, MD, USA, 2021. [Google Scholar] [CrossRef]
- NIST. Seismic Analysis, Design, and Installation of Nonstructural Components and Systems—Recommended Guidance. In Technical Report NIST GCR 17-917-44; NIST: Gaithersburg, MD, USA, 2017. [Google Scholar]
- YBozorgnia, o.; Abrahamson, N.A.; Atik, L.A.; Ancheta, T.D.; Atkinson, G.M.; Baker, J.W.; Baltay, A.; Boore, D.M.; Campbell, K.W.; Chiou, B.S.-J.; et al. NGA-West2 Research Project: An Overview. Earthq. Spectra 2014, 30, 973–987. [Google Scholar] [CrossRef]
- Baker, J.W.; Lee, C. An Improved Algorithm for Selecting Ground Motions to Match a Conditional Spectrum. J. Earthq. Eng. 2018, 22, 708–723. [Google Scholar] [CrossRef]
- NEHRP Consultants Joint Venture. Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analysis. In Technical Report NIST GCR 11-917-15; NIST: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Marano, G.C.; Rosso, M.M.; Aloisio, A.; Cirrincione, G. Generative adversarial networks review in earthquake-related engineering fields. Bull. Earthq. Eng. 2024, 22, 3511–3562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aloisio, A.; Pasca, D.P. Structural Analysis for Earthquake-Resistant Design of Buildings: Closing Editorial. Appl. Sci. 2025, 15, 9374. https://doi.org/10.3390/app15179374
Aloisio A, Pasca DP. Structural Analysis for Earthquake-Resistant Design of Buildings: Closing Editorial. Applied Sciences. 2025; 15(17):9374. https://doi.org/10.3390/app15179374
Chicago/Turabian StyleAloisio, Angelo, and Dag Pasquale Pasca. 2025. "Structural Analysis for Earthquake-Resistant Design of Buildings: Closing Editorial" Applied Sciences 15, no. 17: 9374. https://doi.org/10.3390/app15179374
APA StyleAloisio, A., & Pasca, D. P. (2025). Structural Analysis for Earthquake-Resistant Design of Buildings: Closing Editorial. Applied Sciences, 15(17), 9374. https://doi.org/10.3390/app15179374