Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union
Abstract
1. Introduction
2. Materials and Methods
2.1. Statistical Analysis: Data on Surface Water Quality and Fertilizer Management
2.2. Data Management
2.3. Factors Affecting Renewable Freshwater Resources, and Nutrient Balances in European Countries
3. Results
3.1. Nitrogen Runoff to Surface and Leaching to Groundwater
3.2. Drivers of Gross Nitrogen Across European Countries
4. Discussion
4.1. Limiting Nutrient Leakage to Surface Waters and Reducing Their Leaching to Groundwater
4.2. Improving the Nutrient Balance on Agricultural Land
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | High-Intensity Agriculture | Organic Farming | Gross Nitrogen Balance (Gross N) | Permanent Grassland (TUZ) | Natura 2000 | Afforested Areas | Catch Crops or Green Cover | Fallow Land | Landscape Elements | Nitrogen-Fixing Plants | Fast-Growing Tree Plantations |
---|---|---|---|---|---|---|---|---|---|---|---|
High-intensity agriculture | 1.000 | 0.125 | 0.395 | −0.153 | −0.425 | −0.125 | 0.370 | 0.232 | −0.018 | 0.162 | 0.311 |
Organic farming | 0.125 | 1.000 | −0.158 | −0.164 | 0.253 | −0.464 | −0.332 | 0.045 | −0.377 | 0.685 | −0.202 |
GrossNitrogen Balance(Gross N) | 0.395 | −0.158 | 1.000 | 0.056 | −0.588 | −0.304 | 0.882 | −0.525 | −0.132 | −0.386 | −0.458 |
Permanent grassland (TUZ) | −0.153 | −0.164 | 0.056 | 1.000 | 0.019 | 0.144 | −0.185 | −0.497 | 0.730 | −0.305 | −0.238 |
Natura 2000 | −0.425 | 0.253 | −0.588 | 0.019 | 1.000 | −0.129 | −0.539 | 0.142 | −0.361 | 0.204 | 0.090 |
Afforested areas | −0.125 | −0.464 | −0.304 | 0.144 | −0.129 | 1.000 | −0.365 | 0.029 | 0.580 | 0.089 | 0.300 |
Catch crops or green cover | 0.370 | −0.332 | 0.882 | −0.185 | −0.539 | −0.365 | 1.000 | −0.194 | −0.295 | −0.525 | −0.348 |
Fallow land | 0.232 | 0.045 | −0.525 | −0.497 | 0.142 | 0.029 | −0.194 | 1.000 | −0.139 | 0.155 | 0.517 |
Landscape elements | −0.018 | −0.377 | −0.132 | 0.730 | −0.361 | 0.580 | −0.295 | −0.139 | 1.000 | −0.235 | 0.176 |
Nitrogen-fixing plants | 0.162 | 0.685 | −0.386 | −0.305 | 0.204 | 0.089 | −0.525 | 0.155 | −0.235 | 1.000 | 0.054 |
Fast-growing tree plantations | 0.311 | −0.202 | −0.458 | −0.238 | 0.090 | 0.300 | −0.348 | 0.517 | 0.176 | 0.054 | 1.000 |
Definition | Unit | Variable |
---|---|---|
The ratio of freshwater consumption to renewable freshwater resources in a given region. WEI+ measures water use as a percentage of available renewable freshwater at the river basin level and for each of the four quarters of the year (three consecutive months). | % | WEI+ (Water Exploitation Index Plus) |
Percentage of agricultural land used intensively for farming. | % of agricultural land (UAA) | High-intensity agriculture |
Percentage of agricultural land under organic production. | % of agricultural land (UAA) | Organic farming |
Amount of nitrogen used in agriculture per hectare annually. | kg N/ha/year | Gross Nitrogen Balance (Gross N)* |
Percentage of monitoring points in surface water monitoring with nitrate concentrations below 2 mg/L, in accordance with Directive 91/676/EEC. | % of monitoring points | Nitrates in surface water–high quality |
Percentage of monitoring points in groundwater monitoring with nitrate concentrations below 50 mg/L, in accordance with Directive 91/676/EEC. | % of monitoring points | Nitrates in groundwater–high quality |
Percentage of permanent grassland relative to the total area of agricultural land. | % of agricultural land (UAA) | Permanent grassland (TUZ) |
Percentage of agricultural land under protection within the Natura 2000 program. | % of agricultural land (UAA) | Natura 2000 |
Percentage of arable land covered by forests. | % of arable land | Afforested areas |
Percentage of arable land covered by catch crops or green cover. | % of arable land | Catch crops or green cover |
Percentage of arable land lying fallow, uncultivated. | % of arable land | Fallow land |
Percentage of arable land containing landscape elements such as hedges, field margins, and ponds. | % of arable land | Landscape elements |
Percentage of arable land planted with nitrogen-fixing crops, such as peas, lupins, and alfalfa. | % of arable land | Nitrogen-fixing plants |
Percentage of arable land planted with fast-growing trees, such as energy willows. These are specialized crops where fast-growing tree species are planted to produce large amounts of wood in a shortened production cycle (up to 60 years), mainly for industries based on physical–chemical wood processing. | % of arable land | Fast-growing tree plantations |
References
- Homet, P.; Gallardo-Reina, M.Á.; Aguiar, J.F.; Liberal, I.M.; Casimiro-Soriguer, R.; Ochoa-Hueso, R. Viticulture and the European Union’s Common Agricultural Policy (CAP): Historical overview, current situation and future perspective. J. Sustain. Agric. Environ. 2024, 3, e12099. [Google Scholar] [CrossRef]
- Karwat-Woźniak, B. Wpływ wybranych instrumentów Wspólnej Polityki Rolnej na umacnianie i spowalnianie procesów rozwojowych w polskim rolnictwie. Nierówności Społeczne Wzrost Gospod. 2019, 57, 304–315. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Xiong, G.; Yin, Z.; Guo, Y.; Song, J.; Wu, J. Patterns of nitrate load variability under surface water-groundwater interactions in agriculturally intensive valley watersheds. Water Res. 2024, 267, 122474. [Google Scholar] [CrossRef]
- do Rosário Cameira, M.; Rolim, J.; Valente, F.; Mesquita, M.; Dragosits, U.; Cordovil, C.M. Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones. Agric. Ecosyst. Environ. 2021, 306, 107204. [Google Scholar] [CrossRef]
- Banotra, M.; Kumar, A.; Sharma, B.C.; Nandan, B.; Verma, A.; Kumar, R.; Bhagat, S. Prospectus of use of nanotechnology in agriculture—A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1541. [Google Scholar] [CrossRef]
- Muchovej, R.M.; Rechcigl, J.E. Impact of nitrogen fertilization of pastures and turfgrasses on water quality. In Soil Processes and Water Quality; CRC Press: Boca Raton, FL, USA, 2020; pp. 91–135. [Google Scholar]
- Sun, Y.; Zhou, H.; Sun, Y.; Wu, Q.; Chen, H.; Chi, D. The application of nano-clinoptilolite-based nitrogen fertilizer mixed with urea promotes nitrogen balance and enhances economic and ecological benefits in paddy fields. J. Clean. Prod. 2024, 453, 142257. [Google Scholar] [CrossRef]
- Sukhoveeva, O. Carbon and nitrogen allocation and input in soil with grain crops post-harvest residues: East-European Plain case study. J. Soil Sci. Plant Nutr. 2024, 24, 7525–7541. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q.; Xu, M. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems. Agric. Water Manag. 2021, 247, 106729. [Google Scholar] [CrossRef]
- Pokhrel, A.; Snider, J.L.; Virk, S.; Sintim, H.Y.; Hand, L.C.; Vellidis, G.; Lee, J.M. Quantifying physiological contributions to nitrogen-induced yield variation in field-grown cotton. Field Crops Res. 2023, 299, 108976. [Google Scholar] [CrossRef]
- Cela, S.; Ketterings, Q.M.; Czymmek, K.J.; Soberon, M.; Rasmussen, C.N. Long-term trends of nitrogen and phosphorus mass balances on New York dairy farms. J. Dairy Sci. 2015, 98, 7052–7070. [Google Scholar] [CrossRef] [PubMed]
- Argento, F.; Liebisch, F.; Anken, T.; Walter, A.; El Benni, N. Investigating two solutions to balance revenues and N surplus in Swiss winter wheat. Agric. Syst. 2022, 201, 103451. [Google Scholar] [CrossRef]
- Kopinski, J. Criterion to determine optimum surpluses of gross nitrogen balance on the level NUTS-0, NUTS-2. Acta Sci. Pol. Agric. 2016, 15, 29–36. [Google Scholar]
- Chen, C.F.; Lin, J.Y. Estimating the gross budget of applied nitrogen and phosphorus in tea plantations. Sustain. Environ. Res. 2016, 26, 124–130. [Google Scholar] [CrossRef]
- Serra, J.; Cordovil, C.M.; Cruz, S.; Cameira, M.R.; Hutchings, N.J. Challenges and solutions in identifying agricultural pollution hotspots using gross nitrogen balances. Agric. Ecosyst. Environ. 2019, 283, 106568. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. Sustainable options for fertilizer management in agriculture to prevent water contamination: A review. Environ. Dev. Sustain. 2024, 26, 8303–8327. [Google Scholar] [CrossRef]
- Briukhanov, A.; Vasilev, E.; Kozlova, N.; Shalavina, E. Integrated approach to estimation of nitrogen use efficiency in intensive dairy husbandry at farm level in the North-West Russia. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2025; Volume 614, p. 03002. [Google Scholar]
- Ros, M.; Czymmek, K.J.; Ketterings, Q.M. Combining field phosphorus runoff risk assessments with whole-farm phosphorus balances to guide manure management decisions. J. Environ. Qual. 2020, 49, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, D.; Wei, J.; Yan’an, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- de Vries, W.; Schulte-Uebbing, L.; Kros, H.; Voogd, J.C.; Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 2021, 786, 147283. [Google Scholar] [CrossRef]
- Kremer, A.M. Directorate E: Sectoral and Regional Statistics, Unit E-1: Agriculture and Fisheries. In Methodology and Handbook Eurostat/OECD Nutrient Budgets EU-27, Norway, Switzerland, Version: 1.02; European Commission; Eurostat: Luxembourg, 2013. [Google Scholar]
- Hohmann-Marriott, M.F. A Nitrogen budget for Norway: Analysis of nitrogen flows from societal and natural sources (1961–2020). PLoS ONE 2025, 20, e0313598. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Demars, C.; Zhang, M. Numerical simulation of agricultural sediment and pesticide runoff: RZWQM and PRZM comparison. Hydrol. Process. 2017, 31, 2464–2476. [Google Scholar] [CrossRef]
- Kupiec, J.M. Przegląd metod bilansowania makroskładników NPK w produkcji rolnej. Inżynieria Ochr. Sr. 2015, 18, 323–342. [Google Scholar]
- Wang, L.; Li, M. Review of soil dissolved organic nitrogen cycling: Implications for groundwater nitrogen contamination. J. Hazard. Mater. 2024, 461, 132713. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, Y.V.M.; Guevara, M.A.R.; Mogro, E.J.J.; Tizano, R.P. Impact of irrigation water technification on seven directories of the San Juan-Patoa River using plithogenic n-superhypergraphs based on environmental indicators in the Canton of Pujili, 2021. Neutrosophic Sets Syst. 2024, 74, 47–56. [Google Scholar]
- Soberon, M.; Cela, S.; Ketterings, Q.M.; Rasmussen, C.N.; Czymmek, K.J. Changes in nutrient mass balances over time and related drivers for 54 New York dairy farms. J. Dairy Sci. 2015, 98, 5313–5329. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, W.; Zhu, K.; Fu, J.; Wang, W.; Wang, Z.; Yang, J. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: A global meta-analysis. Field Crops Res. 2024, 306, 109221. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Liu, Z.; Xing, G.; Chen, Z.; Chang, Y.; Wang, Q. Dynamic analysis of soil erosion in the affected area of the lower Yellow River based on RUSLE model. Heliyon 2024, 10, e23819. [Google Scholar] [CrossRef]
- Van Almelo, J.; Ketterings, Q.M.; Cela, S. Integrating record keeping with whole-farm nutrient mass balance: A case study. J. Agric. Sci. 2016, 8, 22–32. [Google Scholar] [CrossRef]
- Ennaji, O.; Vergütz, L.; El Allali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Ferrier, R.C. The DYNAMO project: An introduction. Hydrol. Earth Syst. Sci. 1998, 2, 375–383. [Google Scholar] [CrossRef]
- Janjić, J.; Tadić, L. Fields of application of SWAT hydrological model—A review. Earth 2023, 4, 331–344. [Google Scholar] [CrossRef]
- Kanjana, D. Advancement of nanotechnology applications on plant nutrients management and soil improvement. In Nanotechnology: Food and Environmental Paradigm; Springer: Singapore, 2017; pp. 209–234. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Izaurralde, R.C.; Hill, R.L.; McGill, W.B.; Williams, J.R. Biochar as a global change adaptation: Predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 1437–1458. [Google Scholar] [CrossRef]
- Manjunatha, R.L.; Naik, D.; Usharani, K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019, 8, 1073–1083. [Google Scholar]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Zhu, Z.; Yogev, U.; Keesman, K.J.; Gross, A. Promoting circular economy: Comparison of novel coupled aquaponics with anaerobic digestion and conventional aquaponic systems on nutrient dynamics and sustainability. Resour. Conserv. Recycl. 2024, 208, 107716. [Google Scholar] [CrossRef]
- Miao, F.; Li, Y.; Cui, S.; Jagadamma, S.; Yang, G.; Zhang, Q. Soil extracellular enzyme activities under long-term fertilization management in the croplands of China: A meta-analysis. Nutr. Cycl. Agroecosyst. 2019, 114, 125–138. [Google Scholar] [CrossRef]
- Nangia, V.; Gowda, P.H.; Mulla, D.J. Effects of changes in N-fertilizer management on water quality trends at the watershed scale. Agric. Water Manag. 2010, 97, 1855–1860. [Google Scholar] [CrossRef]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- European Economic Community. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. Off. J. Eur. Communities 1991, 375, 10029232996. [Google Scholar]
- Kindt, R.; Coe, R. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2005. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference; Springer: New York, NY, USA, 2002. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Shah, A.D.; Bartlett, J.W.; Carpenter, J.; Nicholas, O.; Hemingway, H. Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study. Am. J. Epidemiol. 2014, 179, 764–774. [Google Scholar] [CrossRef]
- van Buuren, S. Flexible Imputation of Missing Data, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA (Data Analysis Software System), Version 13.0; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Bartoń, K. MuMIn: Multi-Model Inference, R Package Version 1.47.1. 2024. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 5 May 2025).
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Ortmeyer, F.; Hansen, B.; Banning, A. Groundwater nitrate problem and countermeasures in strongly affected EU countries—A comparison between Germany, Denmark and Ireland. Grundwasser 2023, 28, 3–22. [Google Scholar] [CrossRef]
- Serra, J.; Marques-dos-Santos, C.; Marinheiro, J.; Cruz, S.; Cameira, M.R.; de Vries, W.; Garnier, J. Assessing nitrate groundwater hotspots in Europe reveals an inadequate designation of Nitrate Vulnerable Zones. Chemosphere 2024, 355, 141830. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, R.; Kreins, P.; Tetzlaff, B.; Wendland, F. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. J. Environ. Sci. 2010, 22, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Frollini, E.; Preziosi, E.; Calace, N.; Guerra, M.; Guyennon, N.; Marcaccio, M.; Ghergo, S. Groundwater quality trend and trend reversal assessment in the European Water Framework Directive context: An example with nitrates in Italy. Environ. Sci. Pollut. Res. 2021, 28, 22092–22104. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, A.; Bukowski, M. Consumption of nitrogen fertilizers in the EU—External costs of their production by country of application. Agriculture 2025, 15, 224. [Google Scholar] [CrossRef]
- Pérez-Martín, M.Á.; Arora, M.; Monreal, T.E. Defining the maximum nitrogen surplus in water management plans to recover nitrate polluted aquifers in Spain. J. Environ. Manag. 2024, 356, 120770. [Google Scholar] [CrossRef]
- de Vries, W.; Schulte-Uebbing, L. Required Changes in Nitrogen Inputs and Nitrogen Use Efficiencies to Reconcile Agricultural Productivity with Water and Air Quality Objectives in the EU-27. 2020. Available online: https://www.fertilizerseurope.com/news/required-changes-in-nitrogen-inputs-and-nitrogen-use-efficiencies-to-reconcile-agricultural-productivity-with-water-and-air-quality-objectives-in-the-eu-27/ (accessed on 5 May 2025).
- Jost, E.; Schönhart, M.; Mitter, H.; Zoboli, O.; Schmid, E. Integrated modelling of fertilizer and climate change scenario impacts on agricultural production and nitrogen losses in Austria. Ecol. Econ. 2025, 227, 108398. [Google Scholar] [CrossRef]
- Mennig, P. A never-ending story of reforms: On the wicked nature of the Common Agricultural Policy. npj Sustain. Agric. 2024, 2, 20. [Google Scholar] [CrossRef]
- Kiełbasa, B.; Pietrzak, S.; Ulén, B.; Drangert, J.O.; Tonderski, K. Sustainable agriculture: The study on farmers’ perception and practices regarding nutrient management and limiting losses. J. Water Land Dev. 2018, 36, 67–75. [Google Scholar] [CrossRef]
- Viancelli, A.; Michelon, W. Climate change and nitrogen dynamics: Challenges and strategies for a sustainable future. Nitrogen 2024, 5, 688–701. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Candel, M.B.A.; Navarro-Pedreño, J.; Zorpas, A.A.; Lucas, I.G. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Calleros-Rincón, E.Y.; Espino-Valdés, M.S.; Alarcón-Herrera, M.T. Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water Air Soil Pollut. 2021, 232, 148. [Google Scholar] [CrossRef]
- Mayor, Á.; Beltran, E.; Cortina, J.L.; Valderrama, C. Nitrogen flow analysis in Spain: Perspectives to increase sustainability. Sci. Total Environ. 2023, 858, 160117. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Mukherjee, S.; Syed, S.; Mishra, A.K.; Ayugi, B.O.; Aadhar, S. Anthropogenic and atmospheric variability intensifies flash drought episodes in South Asia. Commun. Earth Environ. 2024, 5, 267. [Google Scholar] [CrossRef]
- Alessi, M.J.; Herrera, D.A.; Evans, C.P.; DeGaetano, A.T.; Ault, T.R. Soil moisture conditions determine land-atmosphere coupling and drought risk in the northeastern United States. J. Geophys. Res. Atmos. 2022, 127, e2021JD034740. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.; Huang, Q.; Leng, G.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2022/1475 of 6 September 2022 laying down rules for the application of Regulation (EU) 2021/2115 of the European Parliament and of the Council as regards the evaluation of CAP Strategic Plans during the implementation period. Off. J. Eur. Union 2022, L 232, 7–13. [Google Scholar]
- European Commission. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 establishing rules on support for strategic plans to be drawn up by Member States under the common agricultural policy (CAP). Off. J. Eur. Union 2021, L 435, 1–186. [Google Scholar]
Weight | Delta | AICc | logLik | df | Predictor |
---|---|---|---|---|---|
0.22 | 0 | 2353.03 | −1141.34 | 31 | 1357 |
0.17 | 0.55 | 2353.58 | −1142.90 | 30 | 137 |
0.13 | 1.09 | 2354.12 | −1140.60 | 32 | 13,567 |
0.13 | 1.14 | 2354.16 | −1141.91 | 31 | 1237 |
0.13 | 1.15 | 2354.17 | −1140.63 | 32 | 12,357 |
0.12 | 1.32 | 2354.34 | −1142.00 | 31 | 1367 |
0.11 | 1.44 | 2354.46 | −1140.78 | 32 | 13,457 |
Parameter | df | F | p |
---|---|---|---|
Intercept | 1 | 243.825 | <0.001 |
Country | 26 | 49.751 | <0.001 |
Catch crops or green cover | 1 | 6.121 | 0.014 |
Natura 2000 | 1 | 15.51 | <0.001 |
Organic farming | 1 | 2.775 | 0.097 |
Error | 240 |
Weight | Delta | AICc | logLik | df | Predictors |
---|---|---|---|---|---|
0.69 | 0 | 240.81 | −86.51 | 30 | 134 |
0.31 | 1.64 | 242.45 | −86.06 | 31 | 1234 |
Parameter | df | F | p |
---|---|---|---|
Intercept | 1 | 95.795 | <0.001 |
Country | 26 | 167.081 | <0.001 |
Gross N | 1 | 5.231 | 0.023 |
Organic farming | 1 | 5.746 | 0.017 |
Error | 241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halecki, W.; Kalarus, K.; Kowalczyk, A.; Garbowski, T.; Chudziak, J.; Grabowska-Polanowska, B. Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union. Appl. Sci. 2025, 15, 9216. https://doi.org/10.3390/app15169216
Halecki W, Kalarus K, Kowalczyk A, Garbowski T, Chudziak J, Grabowska-Polanowska B. Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union. Applied Sciences. 2025; 15(16):9216. https://doi.org/10.3390/app15169216
Chicago/Turabian StyleHalecki, Wiktor, Konrad Kalarus, Agnieszka Kowalczyk, Tomasz Garbowski, Justyna Chudziak, and Beata Grabowska-Polanowska. 2025. "Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union" Applied Sciences 15, no. 16: 9216. https://doi.org/10.3390/app15169216
APA StyleHalecki, W., Kalarus, K., Kowalczyk, A., Garbowski, T., Chudziak, J., & Grabowska-Polanowska, B. (2025). Reducing Water Resource Pressure and Determining Gross Nitrogen Balance of Agricultural Land in the European Union. Applied Sciences, 15(16), 9216. https://doi.org/10.3390/app15169216