Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection
Abstract
1. Introduction
2. Literature Review
- Parallel a priori enhancement paths are designed, and a structure-guided fusion mechanism is embedded to accentuate crack edges and scour boundaries.
- A Sobel-energy weighting scheme is introduced that assigns higher fusion weights to regions rich in gradient energy, thereby preserving high-detail content.
- Quantitative metrics and qualitative evaluations are conducted on real-world datasets of hydraulic infrastructure, demonstrating superior enhancement quality and structural fidelity compared to state-of-the-art methods.
3. Weighted Wavelet Fusion Approach
- Color correction: The raw RGB image is processed with MSRCR, followed by γ-correction, producing a brightness-balanced reference image .
- Contrast enhancement: The RGB image is also transformed to the CIELAB color space; the luminance channel is enhanced with CLAHE and then recombined with the original and channels to form the contrast-enhanced image .
- Wavelet decomposition and weighting: Both and undergo discrete wavelet decomposition to separate low- and high-frequency sub-bands. The Laplacian energy of each sub-band is used as a saliency measure to compute spatially varying fusion weights.
- Wavelet fusion and reconstruction: The weighted sub-bands are fused and inverted via wavelet synthesis, yielding the final enhanced image.
3.1. Color and Brightness Correction
3.2. Contrast Enhancement Based on CIELAB Color Space
3.3. Weighted Wavelet Fusion Based on Structure-Aware Sobel Operator
4. Underwater Image-Enhancement Experiments and Result Analysis
4.1. Experimental Setup and Assessment Indicators
4.2. Qualitative Evaluation
4.3. Quantitative Evaluation
4.4. Ablation Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Commission on Large Dams (ICOLD). World Register of Dams 2024. Available online: https://www.icold-cigb.org/GB/world_register/world_register_of_dams.asp (accessed on 16 July 2025).
- Zhang, A.T.; Gu, V.X. Global Dam Tracker: A Database of More Than 35,000 Dams with Location, Catchment, and Attribute Information. Sci. Data. 2023, 10, 111. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Tang, S.-K. Water Quality Monitoring: A Water Quality Dataset from an On-Site Study in Macao. Appl. Sci. 2025, 15, 4130. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Nayar, S.K.; Barsoum, I.; Alfantazi, A. Degradation of Concrete Structures in Nuclear Power Plants: A Review of the Major Causes and Possible Preventive Measures. Energies 2022, 15, 8011. [Google Scholar] [CrossRef]
- Xu, P.; Chen, M.; Yan, K.; Wang, Z.; Li, X.; Wang, G.; Wang, Y. Research progress on remotely operated vehicle technology for underwater inspection of large hydropower dams. J. Tsinghua Univ. (Sci. Technol.) 2023, 63, 1032–1040. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Q. Research Review on Underwater Target Detection Using Sonar Imagery. J. Unmanned Undersea Syst. 2023, 31, 339–348. [Google Scholar] [CrossRef]
- Li, Z.; Liu, A.; Chen, B.; Wang, J.; Lan, T.; Wang, B. Bridge Underwater Structural Defects Detection Based on Fusion Image Enhancement and Improved YOLOv7. Eng. Mech. 2024, 42, 276–282. [Google Scholar] [CrossRef]
- Wei, G.; Chen, S.; Liu, Y.; Li, X. Survey of underwater image enhancement and restoration algorithms. Appl. Res. Comput. 2021, 38, 2561–2569. [Google Scholar] [CrossRef]
- Xu, J.; Yu, X. Detection of Concrete Structural Defects Using Impact Echo Based on Deep Network. J. Test. Eval. 2021, 49, 109–120. [Google Scholar] [CrossRef]
- Meniconi, S.; Brunone, B.; Tirello, L.; Rubin, A.; Cifrodelli, M.; Capponi, C. Transient tests for checking the Trieste subsea pipeline: Diving into fault detection. J. Mar. Sci. Eng. 2024, 12, 391. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Nagdy, A.S.; Hashem, K.M.; Mohamed, D.S. A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations. Fractal. Fract. 2023, 7, 196. [Google Scholar] [CrossRef]
- Robertson, A.R. Historical Development of CIE Recommended Color Difference Equations. Color. Res. Appl. 1990, 15, 167–170. [Google Scholar] [CrossRef]
- Wang, S.; Korolija, I.; Rovas, D. Impact of Traditional Augmentation Methods on Window State Detection. CLIMA 2022, 1–8. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Wang, S.; Kim, J. Effectiveness of Image Augmentation Techniques on Non-Protective Personal Equipment Detection Using YOLOv8. Appl. Sci. 2025, 15, 2631. [Google Scholar] [CrossRef]
- Stark, J.A. Adaptive Image Contrast Enhancement Using Generalizations of Histogram Equalization. IEEE Trans. Image Process. 2000, 9, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Romeny, T.H.; Zimmerman, J.B.; Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dong, L.; Xu, W. Retinex-Inspired Color Correction and Detail Preserved Fusion for Underwater Image Enhancement. Comput. Electron. Agric. 2022, 192, 106585. [Google Scholar] [CrossRef]
- Ou, Y.; Fan, J.; Zhou, C.; Zhang, P.; Shen, Z.; Fu, Y.; Liu, X.; Hou, Z. An Underwater, Fault-Tolerant, Laser-Aided Robotic Multi-Modal Dense SLAM System for Continuous Underwater In-Situ Observation 2025. arXiv 2025, arXiv:2504.21826. [Google Scholar]
- Li, X.; Hou, G.; Li, K.; Pan, Z. Enhancing Underwater Image via Adaptive Color and Contrast Enhancement, and Denoising. Eng. Appl. Artif. Intell. 2022, 111, 104759. [Google Scholar] [CrossRef]
- Sathya, R.; Bharathi, M.; Dhivyasri, G. Underwater Image Enhancement by Dark Channel Prior. In Proceedings of the 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015; IEEE: Coimbatore, India, 2015; pp. 1119–1123. [Google Scholar]
- Akkaynak, D.; Treibitz, T. Sea-Thru: A Method for Removing Water from Underwater Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691. [Google Scholar]
- Ancuti, C.; Ancuti, C.O.; Haber, T.; Bekaert, P. Enhancing Underwater Images and Videos by Fusion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Providence, RI, USA, 2012; pp. 81–88. [Google Scholar]
- Zhang, W.; Zhou, L.; Zhuang, P.; Li, G.; Pan, X.; Zhao, W.; Li, C. Underwater Image Enhancement via Weighted Wavelet Visual Perception Fusion. IEEE Trans. Circuits. Syst. Video. Technol. 2024, 34, 2469–2483. [Google Scholar] [CrossRef]
- Morlet, J. Sampling Theory and Wave Propagation. In Issues in Acoustic Signal—Image Processing and Recognition. NATO ASI Series; Chen, C.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1. [Google Scholar] [CrossRef]
- Quan, X.; Wei, Y.; Li, B.; Liu, K.; Li, C.; Zhang, B.; Yang, J. The Color Improvement of Underwater Images Based on Light Source and Detector. Sensors 2022, 22, 692. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In MultiMedia Modeling; Schoeffmann, K., Chalidabhongse, T.H., Ngo, C.W., Aramvith, S., O’Connor, N.E., Ho, Y.-S., Gabbouj, M., Elgammal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 10704, pp. 453–465. [Google Scholar]
- Pizer, S.M.; Johnston, R.E.; Ericksen, J.P.; Yankaskas, B.C.; Muller, K.E. Contrast-Limited Adaptive Histogram Equalization: Speed and Effectiveness. In Proceedings of the [1990] Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990; IEEE Computer Society: Atlanta, GA, USA, 1990; pp. 337–345. [Google Scholar]
- Xu, J.; Wei, H. Ultrasonic Testing Analysis of Concrete Structure Based on S Transform. Shock. Vib. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Math, M.; Halse, S.V.; Jagadale, B.N. Underwater Image Enhancement Using Edge Detection Filter and Histogram Equalization. Int. J. Mod. Trends. Sci. Technol. 2023, 9, 32–38. [Google Scholar] [CrossRef]
- Liang, Z.; Ding, X.; Wang, Y.; Yan, X.; Fu, X. GUDCP: Generalization of Underwater Dark Channel Prior for Underwater Image Restoration. IEEE Trans. Circuits. Syst. Video. Technol. 2022, 32, 4879–4884. [Google Scholar] [CrossRef]
- Iqbal, K.; Odetayo, M.; James, A. others Enhancing the Low Quality Images Using Unsupervised Colour Correction Method. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1703–1709. [Google Scholar]
- Zhang, W.; Zhuang, P.; Sun, H.-H.; Li, G.; Kwong, S.; Li, C. Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement. IEEE Trans. Image Process. 2022, 31, 3997–4010. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, B.; Kang, F. A Review of Detection Technologies for Underwater Cracks on Concrete Dam Surfaces. Appl. Sci. 2023, 13, 3564. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Huang, X.; Chen, H.; Xu, B.; Shu, X.; Zhou, Y.; Cao, Q.; Tu, J.; Wang, R.; et al. Underwater Crack Pixel-Wise Identification and Quantification for Dams via Lightweight Semantic Segmentation and Transfer Learning. Autom. Constr. 2022, 144, 104600. [Google Scholar] [CrossRef]
- Saad Saoud, L.; Elmezain, M.; Sultan, A.; Heshmat, M.; Seneviratne, L.; Hussain, I. Seeing Through the Haze: A Comprehensive Review of Underwater Image Enhancement Techniques. IEEE Access. 2024, 12, 145206–145233. [Google Scholar] [CrossRef]
- Mohd Azmi, K.Z.; Abdul Ghani, A.S.; Md Yusof, Z.; Ibrahim, Z. Natural-Based Underwater Image Color Enhancement through Fusion of Swarm-Intelligence Algorithm. Appl. Soft Comput. 2019, 85, 105810. [Google Scholar] [CrossRef]
- Chan, R.; Rottmann, M.; Gottschalk, H. Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 5128–5137. [Google Scholar]
- Panetta, K.; Gao, C.; Agaian, S. Human-Visual-System-Inspired Underwater Image Quality Measures. IEEE J. Ocean. Eng. 2016, 41, 541–551. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the Dark Channel Prior for Single Image Restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef]
Method | Metric | a | b | c | d | e | f | g | h |
---|---|---|---|---|---|---|---|---|---|
CLAHE | UIQM | 1.012 | 1.081 | 1.098 | 0.98 | 0.884 | 1.139 | 0.841 | 0.88 |
AG | 3.279 | 3.259 | 3.895 | 3.428 | 4.886 | 3.982 | 3.677 | 4.306 | |
Entropy | 6.757 | 6.91 | 7.126 | 7.688 | 7.235 | 7.142 | 6.972 | 7.69 | |
UCM | UIQM | 0.533 | 0.631 | 0.434 | 0.557 | 0.791 | 0.729 | 0.611 | 0.88 |
AG | 3.913 | 3.169 | 3.899 | 2.697 | 4.855 | 4.133 | 3.892 | 3.043 | |
Entropy | 7.569 | 7.522 | 7.312 | 7.787 | 7.779 | 7.413 | 7.528 | 7.787 | |
WWPF | UIQM | 1.019 | 0.957 | 1.395 | 0.831 | 1.347 | 1.138 | 1.254 | 1.007 |
AG | 5.727 | 5.048 | 5.887 | 4.538 | 7.061 | 7.097 | 5.429 | 4.949 | |
Entropy | 7.731 | 7.755 | 7.656 | 7.913 | 7.714 | 7.74 | 7.575 | 7.905 | |
RGHS | UIQM | 1.123 | 0.894 | 1.030 | 0.72 | 0.826 | 1.055 | 0.867 | 0.776 |
AG | 4.719 | 3.68 | 4.365 | 3.023 | 5.083 | 5.062 | 3.949 | 3.629 | |
Entropy | 7.813 | 7.719 | 7.489 | 7.773 | 7.833 | 7.675 | 7.519 | 7.862 | |
UDCP | UIQM | 0.303 | 0.733 | 0.358 | 0.103 | 0.373 | 0.636 | 0.362 | 0.387 |
AG | 3.567 | 2.334 | 3.849 | 3.671 | 4.614 | 3.567 | 4.141 | 3.812 | |
Entropy | 6.853 | 6.19 | 6.856 | 7.266 | 7.236 | 6.963 | 6.937 | 7.340 | |
MLLE | UIQM | 0.999 | 0.917 | 1.307 | 0.827 | 1.335 | 1.056 | 1.179 | 1.006 |
AG | 5.930 | 5.236 | 6.112 | 4.419 | 7.700 | 7.003 | 5.620 | 5.122 | |
Entropy | 7.310 | 7.442 | 7.327 | 7.706 | 7.639 | 7.487 | 7.294 | 7.706 | |
WWSF | UIQM | 1.443 | 1.391 | 1.433 | 1.187 | 1.463 | 1.395 | 1.319 | 1.220 |
AG | 12.474 | 9.018 | 9.921 | 8.731 | 15.510 | 10.504 | 9.971 | 8.524 | |
Entropy | 7.358 | 7.344 | 7.488 | 7.590 | 7.721 | 7.435 | 7.445 | 7.574 |
Ablation Model | Figure 1 | Figure 2 | Figure 3 | Figure 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UIQM | AG | Entropy | UIQM | AG | Entropy | UIQM | AG | Entropy | UIQM | AG | Entropy | |
No-MSRCR | 1.172 | 4.166 | 6.695 | 0.815 | 5.451 | 7.100 | 0.946 | 3.737 | 7.312 | 0.575 | 4.157 | 7.293 |
No-GAMMA | 1.276 | 6.228 | 7.346 | 1.264 | 7.727 | 7.508 | 1.000 | 3.665 | 7.628 | 1.021 | 4.657 | 7.686 |
No-CLAHE | 1.295 | 6.027 | 7.420 | 1.176 | 7.968 | 7.188 | 1.005 | 3.168 | 7.256 | 1.000 | 3.942 | 7.424 |
Ordinary Fusion | 1.271 | 6.173 | 7.280 | 1.167 | 7.968 | 7.671 | 1.039 | 4.361 | 7.555 | 0.989 | 5.320 | 7.544 |
Full model | 1.460 | 12.474 | 7.366 | 1.477 | 15.510 | 7.726 | 1.201 | 8.731 | 7.594 | 1.229 | 8.524 | 7.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, J.; Luo, J.; Hu, J.; Zhang, X.; Xu, J. Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection. Appl. Sci. 2025, 15, 8037. https://doi.org/10.3390/app15148037
Zhang M, Zhang J, Luo J, Hu J, Zhang X, Xu J. Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection. Applied Sciences. 2025; 15(14):8037. https://doi.org/10.3390/app15148037
Chicago/Turabian StyleZhang, Minghui, Jingkui Zhang, Jugang Luo, Jiakun Hu, Xiaoping Zhang, and Juncai Xu. 2025. "Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection" Applied Sciences 15, no. 14: 8037. https://doi.org/10.3390/app15148037
APA StyleZhang, M., Zhang, J., Luo, J., Hu, J., Zhang, X., & Xu, J. (2025). Wavelet Fusion with Sobel-Based Weighting for Enhanced Clarity in Underwater Hydraulic Infrastructure Inspection. Applied Sciences, 15(14), 8037. https://doi.org/10.3390/app15148037