Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor
Abstract
1. Introduction
2. Materials and Methods
2.1. Combustion Chamber
2.2. Mathematical and Physical Models
2.2.1. Governing Equations
2.2.2. Turbulence Model
2.2.3. Combustion Model
2.2.4. Radiation Model
2.2.5. Boundary Conditions
2.3. Numerical Methods and Computational Details
3. Results and Discussion
3.1. Temperature and Velocity Fields
3.2. Emissions
4. Conclusions
- (i)
- The size of the central recirculation zone induced by the swirler slightly decreases for pure hydrogen flames compared to NG/H2 flames. Flow patterns vary depending on the presence of secondary air. When only primary air is used, the central recirculation zone is larger, and a smaller recirculation zone forms beneath the top-mounted plenum.
- (ii)
- The maximum and average temperatures in the combustor increase with rising hydrogen content in the fuel. At a fixed fuel composition and primary air fraction (α = 50%), the average temperature decreases while the maximum temperature increases with increasing excess air coefficient. When the excess air coefficient is held constant (λ = 1.3), both the average and maximum temperatures increase with the primary air fraction as α increases from 50% to 66.7%. At α = 100%, the average temperature continues to increase while the maximum temperature maintains a near-linear dependence on the hydrogen molar fraction.
- (iii)
- The temperature in the region delimited by the inner and outer shear layers of the swirling flow increases with the rise of the hydrogen content in the fuel. The temperature rise at the centreline shifts slightly downstream for pure hydrogen flames, and the temperature remains 50° to 80 °C higher than for blended CH4/H2 flames towards the exit section. When secondary air is introduced, the temperature decreases in the reaction zone, but a second temperature peak appears at the centreline, near the exit due to the combustion of unburned fuel transported from the primary reaction zone.
- (iv)
- Increasing the primary air fraction results in a smoother temperature profile along the centerline. When only primary air is used, the centerline profile exhibits a single temperature peak near the burner, followed by a gradual downstream decline. As the excess air coefficient increases, the initial rise in centerline temperature shifts slightly closer to the burner. Further downstream, a temperature peak appears for λ = 1.3 and λ = 1.5, though it is less pronounced at λ = 1.5 and nearly disappears at λ = 1.7. Beyond this peak, dilution effects dominate, leading to a temperature decrease towards the combustor exit.
- (v)
- The O2 and CO emissions are higher for α = 50% and 66.6% than for α = 100%, indicating incomplete combustion in the former case. The NO emissions are lowest for α = 50% and show little variation between α = 66.7% and α = 100%. They do not exceed 50 ppm, except for pure hydrogen combustion and α ≥ 66.7%. For a given fuel composition, CO2 and CO emissions decrease, while NO emissions increase with the excess air coefficient.
- (vi)
- The CO emissions decrease and NO emissions increase with rising hydrogen content in the fuel, a trend that becomes more pronounced as the hydrogen molar fraction approaches unity.
- (vii)
- Secondary air is particularly useful for hydrogen flames, as NO emissions remain relatively low (e.g., ~40 ppm at λ = 1.3 and α = 50%) despite increasing with higher excess air coefficients, and CO emissions are absent. For NG/H2 flames, secondary air is effective only at sufficiently high excess air levels to keep CO emissions within acceptable limits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Rosado, P. Energy Mix. Available online: https://ourworldindata.org/energy-mix (accessed on 18 November 2024).
- International Energy Agency. World Energy Outlook 2024. Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 29 May 2024).
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Mistry, A. The (annoyingly) slow pace of energy transition. MRS Bull. 2023, 48, 688–689. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Xie, Z.; Jin, Q.; Su, G.; Lu, W. A review of hydrogen storage and transportation: Progresses and challenges. Energies 2024, 17, 4070. [Google Scholar] [CrossRef]
- Levinsky, H. Why can’t we just burn hydrogen? Challenges when changing fuels in an existing infrastructure. Prog. Energy Combust. Sci. 2021, 84, 100907. [Google Scholar] [CrossRef]
- Abdin, Z. Bridging the energy future: The role and potential of hydrogen co-firing with natural gas. J. Clean. Prod. 2024, 436, 140724. [Google Scholar] [CrossRef]
- Kim, H.S.; Arghode, V.K.; Gupta, K. Flame characteristics of hydrogen-enriched methane–air premixed swirling flames. Int. J. Hydrogen Energy 2009, 34, 1063–1073. [Google Scholar] [CrossRef]
- Kashir, B.; Tabejamaat, S.; Jalalatian, N. A numerical study on combustion characteristics of blended methane-hydrogen bluff-body stabilized swirl diffusion flames. Int. J. Hydrogen Energy 2015, 40, 6243–6258. [Google Scholar] [CrossRef]
- Wang, D.; Tan, Z.; Xu, J.; Meng, H. Quantitative studies of NO emissions from various reaction pathways in swirling combustion of hydrogen-enriched methane. Int. J. Hydrogen Energy 2024, 53, 409–421. [Google Scholar] [CrossRef]
- Du, W.; Zhou, S.; Qiu, H.; Zhao, J.; Fan, Y. Experiment and numerical study of the combustion behavior of hydrogen-blended natural gas in swirl burners. Case Stud. Therm. Eng. 2022, 39, 102468. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Garnier, F.; Seers, P. Numerical study of the impact of hydrogen addition, swirl intensity and equivalence ratio on methane-air combustion. Int. J. Turbo Jet. Eng. 2024, 41, 377–393. [Google Scholar] [CrossRef]
- Cozzi, F.; Coghe, A. Behavior of hydrogen-enriched non-premixed swirled natural gas flames. Int. J. Hydrogen Energy 2006, 31, 669–677. [Google Scholar] [CrossRef]
- Kim, H.S.; Arghode, V.K.; Linck, M.B.; Gupta, A.K. Hydrogen addition effects in a confined swirl-stabilized methane-air flame. Int. J. Hydrogen Energy 2009, 34, 1054–1062. [Google Scholar] [CrossRef]
- Ilbas, M.; Yilmaz, I. Experimental analysis of the effects of hydrogen addition on methane combustion. Int. J. Energy Res. 2012, 36, 643–647. [Google Scholar] [CrossRef]
- Rajpara, P.; Shah, R.; Banerjee, J. Effect of hydrogen addition on combustion and emission characteristics of methane fueled upward swirl can combustor. Int. J. Hydrogen Energy 2018, 43, 17505–17519. [Google Scholar] [CrossRef]
- Daurer, G.; Schwarz, S.; Demuth, M.; Gaber, C.; Hochenauer, C. Experimental and numerical analysis of industrial-type low-swirl combustion of hydrogen enriched natural gas including OH* chemiluminescence imaging. Int. J. Hydrogen Energy 2024, 80, 890–906. [Google Scholar] [CrossRef]
- Ge, B.; Ji, Y.; Zhang, Z.; Zang, S.; Tian, Y.; Yu, H.; Chen, M.; Jiao, G.; Zhang, D. Experiment study on the combustion performance of hydrogen-enriched natural gas in a DLE burner. Int. J. Hydrogen Energy 2019, 44, 14023–14031. [Google Scholar] [CrossRef]
- Schefer, R.W.; Wicksall, D.M.; Agrawal, A.K. Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner. Proc. Comb. Inst. 2002, 29, 843–851. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, G.; Asim, T.; Mishra, R. Combustion characterization of hybrid methane-hydrogen gas in domestic swirl stoves. Fuel 2023, 333, 126413. [Google Scholar] [CrossRef]
- Patel, V.; Shah, R. Effect of hydrogen enrichment on combustion characteristics of methane swirling and non-swirling in-verse diffusion flame. Int. J. Hydrogen Energy 2019, 44, 28316–28329. [Google Scholar] [CrossRef]
- Mokheimer, E.M.A.; Sanusi, Y.S.; Habib, M.A. Numerical study of hydrogen-enriched methane–air combustion under ultra-lean conditions. Int. J. Energy Res. 2016, 40, 743–762. [Google Scholar] [CrossRef]
- Gee, A.J.; Smith, N.; Chinnici, A.; Medwell, P.R. Characterisation of turbulent non-premixed hydrogen-blended flames in a scaled industrial low-swirl burner. Int. J. Hydrogen Energy 2024, 49, 747–757. [Google Scholar] [CrossRef]
- Shanbhogue, S.J.; Sanusi, Y.S.; Taamallah, S.; Habib, M.A.; Mokheimer, E.M.A.; Ghoniem, A.F. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 2016, 163, 494–507. [Google Scholar] [CrossRef]
- Ren, S.; Jones, W.P.; Wang, X. Hydrogen-enriched methane combustion in a swirl vortex-tube combustor. Fuel 2023, 334, 126582. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, W.; Han, W.; Wang, J.; Huang, Z.; van Oijen, J. FGM-LES study of premixed H2/CH4/air flame flashback in a bluff-body swirl burner: The impact of preferential diffusion. Combust. Flame 2025, 275, 114059. [Google Scholar] [CrossRef]
- Marragou, S.; Magnes, H.; Poinsot, T.; Selle, L.; Schuller, T. Stabilization regimes and pollutant emissions from a dual fuel CH4/H2 and dual swirl low NOx burner. Int. J. Hydrogen Energy 2022, 47, 19275–19288. [Google Scholar] [CrossRef]
- Laera, D.; Agostinelli, P.W.; Selle, L.; Cazères, Q.; Oztarlik, G.; Schuller, T.; Gicquel, L.; Poinsot, T. Stabilization mechanisms of CH4 premixed swirled flame enriched with a non-premixed hydrogen injection. Proc. Combust. Inst. 2021, 38, 6355–6363. [Google Scholar] [CrossRef]
- Pignatelli, F.; Sanned, D.; Derafshzan, S.; Szasz, R.Z.; Bai, X.S.; Richter, M.; Ehn, A.; Lörstad, D.; Petersson, P.; Subash, A.A. Impact of pilot flame and hydrogen enrichment on turbulent methane/hydrogen/air swirling premixed flames in a model gas turbine combustor. Exp. Therm. Fluid Sci. 2024, 152, 111124. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Kamali, R.; Sotoudeh, F.; Karimi, N.; Jeung, I.-S. Numerical investigation of the effects of swirling hot co-flow on MILD combustion of a hydrogen-methane blend. J. Energy Resour. Technol. 2020, 142, e112301. [Google Scholar] [CrossRef]
- Roy, R.; Gupta, A.K. Performance enhancement of swirl-assisted distributed combustion with hydrogen-enriched methane. Apply Energy 2023, 338, 120919. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook, Standard Reference Database Number 69. Available online: https://doi.org/10.18434/T4D303 (accessed on 22 November 2024).
- Arya, A.K.; Katiyar, R.; Kumar, P.S.; Kapoor, A.; Pal, D.B.; Rangasamy, G. A multi-objective model for optimizing hydrogeninjected-high pressure natural gas pipeline networks. Int. J. Hydrogen Energy 2023, 48, 29699–29723. [Google Scholar] [CrossRef]
- Pacheco, G.; Pereira, J.; Mendes, M.; Coelho, P. Investigation of a fuel-flexible diffusion swirl burner fired with NH3 and natural gas mixtures. Energies 2024, 17, 4206. [Google Scholar] [CrossRef]
- Silva, M.; Pacheco, G.P.; Mendes, M.A.A.; Coelho, P.J. Experimental investigation of the combustion of natural gas/hydrogen mixtures in a novel laboratory combustor. In Proceedings of the 13th Mediterranean Combustion Symposium, Corfu, Greece, 1–5 June 2025. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 2nd ed.; Edwards, Inc.: Philadelphia, PA, USA, 2005. [Google Scholar]
- Shih, T.H.; Liou, W.W.; Shabir, A.; Yang, Z.; Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Cellek, M.S.; Pınarbasi, A. Investigations on performance and emission characteristics of an industrial low swirl burner while burning natural gas, methane, hydrogen-enriched natural gas and hydrogen as fuels. Int. J. Hydrogen Energy 2018, 43, 1194–1207. [Google Scholar] [CrossRef]
- İlbaş, M.; Karyeyen, S.; Yilmaz, I. Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. Int. J. Hydrogen Energy 2016, 41, 7185–7191. [Google Scholar] [CrossRef]
- Chakchak, S.; Hidouri, A.; Ghabi, A.; Chrigui, M.; Boushaki, T. Numerical study of turbulent swirling diffusion flame under lean and rich conditions using turbulence realizable k-epsilon model. Combust. Sci. Technol. 2023, 195, 1461–1482. [Google Scholar] [CrossRef]
- Magnussen, B.F. On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow. In Proceedings of the Nineteenth AIAA Meeting, St. Louis, MO, USA, 12–15 January 1981. [Google Scholar] [CrossRef]
- He, D.; Yu, Y.; Ma, H.; Liang, H.; Wang, C. Extensive discussions of the eddy dissipation concept constants and numerical simulations of the Sandia flame D. Appl. Sci. 2022, 12, 9162. [Google Scholar] [CrossRef]
- Gran, I.R.; Magnussen, B.F. Numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 1996, 199, 191–217. [Google Scholar] [CrossRef]
- Pope, S.B.; Hiremath, V.; Lantz, S.R.; Ren, Z.; Lu, L. ISAT-CK7: A Fortran 90 Library to Accelerate the Implementation of Combustion Chemistry. 2012. Available online: http://tcg.mae.cornell.edu/ISATCK7 (accessed on 18 December 2024).
- Kazakov, A.; Frenklach, M. Reduced Reaction Sets Based on GRI-Mech 1.2. Available online: http://combustion.berkeley.edu/drm/ (accessed on 18 December 2024).
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C., Jr.; et al. GRI-Mech 3.0. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 18 December 2024).
- Parente, A.; Galletti, C.; Tognotti, L. A simplified approach for predicting NO formation in MILD combustion of CH4–H2 mixtures. Proc. Combust. Inst. 2011, 33, 3343–3350. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim. URSS 1946, 11, 577–628. [Google Scholar] [CrossRef]
- De Soete, G.G. Overall reaction rates of NO and N2 formation from fuel nitrogen. In Proceedings of the 15th Symposium (International) on Combustion, Tokyo, Japan, 25–31 August 1974; pp. 1093–1102. [Google Scholar] [CrossRef]
- Modest, M.F.; Mazumder, S. Radiative Heat Transfer, 4th ed.; Academic Press: New York, NY, USA, 2021. [Google Scholar]
- Hottel, H.; Sarofim, A. Radiative Transfer; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Simcenter Star CCM+ 2020.2. Available online: https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/ (accessed on 22 November 2024).
- Venkatakrishnan, V. On the accuracy of limiters and convergence to steady state solutions. In Proceedings of the AIAA 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993. AIAA Paper 93-0880. [Google Scholar] [CrossRef]
- Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. ASME J. Fluids Eng. 1994, 116, 405–413. [Google Scholar] [CrossRef]
- Sorgulu, F.; Ozturk, M.; Javani, N.; Dincer, I. Experimental investigation for combustion performance of hydrogen and natural gas fuel blends. Int. J. Hydrogen Energy 2023, 48, 34476–34485. [Google Scholar] [CrossRef]
- Burbano, H.J.; Amell, A.A.; García, J.M. Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int. J. Hydrogen Energy 2008, 33, 3410–3415. [Google Scholar] [CrossRef]
- Rørtveit, G.J.; Zepter, K.; Skreiberg, Ø.; Fossum, M.; Hustad, J.E. A comparison of low-NOx burners for combustion of methane and hydrogen mixtures. Proc. Combust. Inst. 2002, 29, 1123–1129. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Q.; He, S.; Wang, S.; Zhang, Z. Numerical simulation on combustion characteristics of methane/hydrogen blended fuel for non-premixed conical bluff body burner. Int. J. Hydrogen Energy 2024, 65, 50–60. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, G.; Duan, Y.; Mi, H. Effect of obstacle arrangement on premixed hydrogen flame: Eddy-dissipation concept model based numerical simulation. Int. J. Hydrogen Energy 2023, 43, 16445–16456. [Google Scholar] [CrossRef]
Hydrogen | Methane | |
---|---|---|
Molar mass (kg/kmol) [34] | 2.016 | 16.043 |
Density (kg/m3) [34] | 0.0818 | 0.6528 |
Dynamic viscosity (kg/m·s) [34] | 8.938 × 10−6 | 1.114 × 10−5 |
Thermal conductivity (W/m·K) [34] | 0.1867 | 0.0342 |
Specific heat capacity (J/kg·K) [34] | 14,313 | 2235.9 |
Adiabatic flame temperature (K) [35] | 2483 | 2236 |
Lower heating value (MJ/kg) [35] | 120 | 50 |
%H2 (vol.) in Fuel | Excess Air Coefficient (λ) | Fraction of Primary Air (%), (α) | Fuel Mass Flow Rate (kg/s) | Primary Air Mass Flow Rate (kg/s) | Secondary Air Mass Flow Rate (kg/s) |
---|---|---|---|---|---|
0 | 1.3 | 50 | 1.29 × 10−5 | 1.44 × 10−4 | 1.44 × 10−4 |
20 | 1.3 | 50 | 1.23 × 10−5 | 1.42 × 10−4 | 1.42 × 10−4 |
40 | 1.3 | 50 | 1.16 × 10−5 | 1.39 × 10−4 | 1.39 × 10−4 |
60 | 1.3 | 50 | 1.04 × 10−5 | 1.35 × 10−4 | 1.35 × 10−4 |
80 | 1.3 | 50 | 8.63 × 10−6 | 1.28 × 10−4 | 1.28 × 10−4 |
100 | 1.3 | 50 | 5.21 × 10−6 | 1.16 × 10−4 | 1.16 × 10−4 |
0 | 1.3 | 66.7 | 1.29 × 10−5 | 1.93 × 10−4 | 9.60 × 10−5 |
20 | 1.3 | 66.7 | 1.23 × 10−5 | 1.89 × 10−4 | 9.48 × 10−5 |
40 | 1.3 | 66.7 | 1.16 × 10−5 | 1.85 × 10−4 | 9.30 × 10−5 |
60 | 1.3 | 66.7 | 1.04 × 10−5 | 1.80 × 10−4 | 9.02 × 10−5 |
80 | 1.3 | 66.7 | 8.63 × 10−6 | 1.71 × 10−4 | 8.57 × 10−5 |
100 | 1.3 | 66.7 | 5.21 × 10−6 | 1.54 × 10−4 | 7.73 × 10−5 |
0 | 1.3 | 100 | 1.29 × 10−5 | 2.88 × 10−4 | 0 |
20 | 1.3 | 100 | 1.23 × 10−5 | 2.84 × 10−4 | 0 |
40 | 1.3 | 100 | 1.16 × 10−5 | 2.78 × 10−4 | 0 |
60 | 1.3 | 100 | 1.04 × 10−5 | 2.70 × 10−4 | 0 |
80 | 1.3 | 100 | 8.63 × 10−6 | 2.57 × 10−4 | 0 |
100 | 1.3 | 100 | 5.21 × 10−6 | 2.32 × 10−4 | 0 |
0 | 1.5 | 50 | 1.29 × 10−5 | 1.66 × 10−4 | 1.66 × 10−4 |
20 | 1.5 | 50 | 1.23 × 10−5 | 1.64 × 10−4 | 1.64 × 10−4 |
40 | 1.5 | 50 | 1.16 × 10−5 | 1.61 × 10−4 | 1.61 × 10−4 |
60 | 1.5 | 50 | 1.04 × 10−5 | 1.56 × 10−4 | 1.56 × 10−4 |
80 | 1.5 | 50 | 8.63 × 10−6 | 1.48 × 10−4 | 1.48 × 10−4 |
100 | 1.5 | 50 | 5.21 × 10−6 | 1.34 × 10−4 | 1.34 × 10−4 |
0 | 1.7 | 50 | 1.29 × 10−5 | 1.89 × 10−4 | 1.89 × 10−4 |
20 | 1.7 | 50 | 1.23 × 10−5 | 1.86 × 10−4 | 1.86 × 10−4 |
40 | 1.7 | 50 | 1.16 × 10−5 | 1.82 × 10−4 | 1.82 × 10−4 |
60 | 1.7 | 50 | 1.04 × 10−5 | 1.77 × 10−4 | 1.77 × 10−4 |
80 | 1.7 | 50 | 8.63 × 10−6 | 1.68 × 10−4 | 1.68 × 10−4 |
100 | 1.7 | 50 | 5.21 × 10−6 | 1.51 × 10−4 | 1.51 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, B.M.; Pacheco, G.P.; Mendes, M.A.A.; Coelho, P.J. Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor. Appl. Sci. 2025, 15, 7123. https://doi.org/10.3390/app15137123
Pinto BM, Pacheco GP, Mendes MAA, Coelho PJ. Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor. Applied Sciences. 2025; 15(13):7123. https://doi.org/10.3390/app15137123
Chicago/Turabian StylePinto, Bruno M., Gonçalo P. Pacheco, Miguel A. A. Mendes, and Pedro J. Coelho. 2025. "Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor" Applied Sciences 15, no. 13: 7123. https://doi.org/10.3390/app15137123
APA StylePinto, B. M., Pacheco, G. P., Mendes, M. A. A., & Coelho, P. J. (2025). Numerical Simulation of Natural Gas/Hydrogen Combustion in a Novel Laboratory Combustor. Applied Sciences, 15(13), 7123. https://doi.org/10.3390/app15137123