Recent Advances in Human–Robot Interactions
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borboni, A.; Reddy, K.V.V.; Elamvazuthi, I.; AL-Quraishi, M.S.; Natarajan, E.; Azhar Ali, S.S. The Expanding Role of Artificial Intelligence in Collaborative Robots for Industrial Applications: A Systematic Review of Recent Works. Machines 2023, 11, 111. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Ercolano, G.; Rossi, S.; Conti, D.; Di Nuovo, A. Gesture recognition with a 2D low-resolution embedded camera to minimise intrusion in robot-led training of children with autism spectrum disorder. Appl. Intell. 2024, 54, 6579–6591. [Google Scholar] [CrossRef]
- Song, J. A Review of The Application of Natural Language Processing in Human-Computer Interaction. Appl. Comput. Eng. 2024, 106, 111–117. [Google Scholar] [CrossRef]
- Kang, Y.; Cai, Z.; Tan, C.W.; Huang, Q.; Liu, H. Natural language processing (NLP) in management research: A literature review. J. Manag. Anal. 2020, 7, 139–172. [Google Scholar] [CrossRef]
- Obaigbena, A.; Lottu, O.A.; Ugwuanyi, E.D.; Jacks, B.S.; Sodiya, E.O.; Daraojimba, O.D. AI and human-robot interaction: A review of recent advances and challenges. GSC Adv. Res. Rev. 2024, 18, 321–330. [Google Scholar] [CrossRef]
- Di Nuovo, A.; Bamforth, J.; Conti, D.; Sage, K.; Ibbotson, R.; Clegg, J.; Westaway, A.; Arnold, K. An explorative study on robotics for supporting children with autism spectrum disorder during clinical procedures. In Proceedings of the Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; pp. 189–191. [Google Scholar]
- Fanni, S.C.; Febi, M.; Aghakhanyan, G.; Neri, E. Natural language processing. In Introduction to Artificial Intelligence; Springer International Publishing: Cham, Switzerland, 2023; pp. 87–99. [Google Scholar] [CrossRef]
- Kim, C.Y.; Lee, C.P.; Mutlu, B. Understanding large-language model (LLM)-powered human-robot interaction. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA, 11–15 March 2024; pp. 371–380. [Google Scholar]
- Dutta, V.; Zielinska, T. Predicting the intention of human activities for real-time human-robot interaction (HRI). In Proceedings of the Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, 1–3 November 2016; pp. 723–734. [Google Scholar]
- Belardinelli, A. Gaze-based intention estimation: Principles, methodologies, and applications in HRI. ACM Trans. Hum.-Robot Interact. 2024, 13, 1–30. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, H.; Zhang, Z. Advancements in humanoid robots: A comprehensive review and future prospects. IEEE/CAA J. Autom. Sin. 2024, 11, 301–328. [Google Scholar] [CrossRef]
- Patacchiola, M.; Cangelosi, A. A developmental cognitive architecture for trust and theory of mind in humanoid robots. IEEE Trans. Cybern. 2020, 52, 1947–1959. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.; Di Nuovo, S.; Buono, S.; Di Nuovo, A. Robots in Education and Care of Children with Developmental Disabilities: A Study on Acceptance by Experienced and Future Professionals. Int. J. Soc. Robot. 2017, 9, 51–62. [Google Scholar] [CrossRef]
- Mutlu, B.; Forlizzi, J. Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, HRI 2008, Amsterdam, The Netherlands, 12–15 March 2008; pp. 287–294. [Google Scholar]
- Welfare, K.S.; Hallowell, M.R.; Shah, J.A.; Riek, L.D. Consider the human work experience when integrating robotics in the workplace. In Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Republic of Korea, 11–14 March 2019; pp. 75–84. [Google Scholar]
- Mital, A.; Pennathur, A. Advanced technologies and humans in manufacturing workplaces: An interdependent relationship. Int. J. Ind. Ergon. 2004, 33, 295–313. [Google Scholar] [CrossRef]
- Warm, J.S.; Matthews, G.; Finomore, V.S., Jr. Vigilance, workload, and stress. In Performance Under Stress; CRC Press: Boca Raton, FL, USA, 2018; pp. 131–158. [Google Scholar]
- Woods, D.D. Decomposing automation: Apparent simplicity, real complexity. In Automation and Human Performance; CRC Press: Boca Raton, FL, USA, 2018; pp. 3–17. [Google Scholar]
- Toichoa Eyam, A.; Mohammed, W.M.; Martinez Lastra, J.L. Emotion-driven analysis and control of human-robot interactions in collaborative applications. Sensors 2021, 21, 4626. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.G.C.; Lo, W.-S.; Mizuuchi, I. The Impression of Phones and Prosody Choice in the Gibberish Speech of the Virtual Embodied Conversational Agent Kotaro. Appl. Sci. 2023, 13, 10143. [Google Scholar] [CrossRef]
- Cirasa, C.; Høgsdal, H.; Conti, D. “I See What You Feel”: An Exploratory Study to Investigate the Understanding of Robot Emotions in Deaf Children. Appl. Sci. 2024, 14, 1446. [Google Scholar] [CrossRef]
- Loizaga, E.; Bastida, L.; Sillaurren, S.; Moya, A.; Toledo, N. Modelling and Measuring Trust in Human–Robot Collaboration. Appl. Sci. 2024, 14, 1919. [Google Scholar] [CrossRef]
- Hou, J.; Xue, Z.; Liang, Y.; Sun, Y.; Zhao, Y.; Chen, Q. Self-Configurable Centipede-Inspired Rescue Robot. Appl. Sci. 2024, 14, 2331. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, H.; Oh, K. Real-Time Motion Blur Using Multi-Layer Motion Vectors. Appl. Sci. 2024, 14, 4626. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Conti, D. Recent Advances in Human–Robot Interactions. Appl. Sci. 2025, 15, 6850. https://doi.org/10.3390/app15126850
Han J, Conti D. Recent Advances in Human–Robot Interactions. Applied Sciences. 2025; 15(12):6850. https://doi.org/10.3390/app15126850
Chicago/Turabian StyleHan, Jeonghye, and Daniela Conti. 2025. "Recent Advances in Human–Robot Interactions" Applied Sciences 15, no. 12: 6850. https://doi.org/10.3390/app15126850
APA StyleHan, J., & Conti, D. (2025). Recent Advances in Human–Robot Interactions. Applied Sciences, 15(12), 6850. https://doi.org/10.3390/app15126850