An EMG-to-Force Processing Method for Estimating In Vivo Knee Muscle Power During Self-Selected Speed Walking in Adults
Abstract
:1. Introduction
2. Methods
Subjects
3. Data Acquisition and Processing
3.1. Kinetics and Kinematics
3.2. EMG-to-Force Processing—Force Processor
3.3. EMG-to-Force Processing—Dynamic Electromyography (EMG)
3.4. Statistics
Assessment Duration
3.5. Assessment of Model (Analysis)
4. Results
5. Discussion
5.1. Power Production by Individual Muscles
5.2. Closeness of Fit and Potential Error Sources
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFLH | Long Head of the Biceps Femoris |
BFSH | Short Head of the Biceps Femoris |
EFP | EMG-to-Force Processing |
EMD | Electromechanical Delay |
EMG | Electromyogram |
GC | Gait Cycle |
GRAC | Gracilis |
GRF | Ground Reaction Force |
Hz | Hertz |
Kg | Kilograms |
KIN | Combination of Kinetics plus Kinematics |
LE | Linear Envelope |
LGAST | Lateral Gastrocnemius |
M | Moment |
MGAST | Medial Gastrocnemius |
MMT | Maximum Muscle Test |
MTU | Muscle–Tendon Unit |
MVC | Maximum Voluntary Contraction |
POP | Popliteus |
RF | Rectus Femoris |
SART | Sartorius |
SMEMB | Semimembranosis |
STEND | Semitendinosis |
TFL | Tensor Fascia Lata |
VI | Vastus Intermedius |
VL | Vastus Lateralis |
VMO | Vastus Medialis Oblique |
%GC | Percent Gait Cycle |
References
- Trinler, U.; Hollands, L.; Jones, R.; Baker, R. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analysis. Gait Posture 2018, 61, 353–361. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Winter, D. Predicting muscle forces in gait from EMG signals and musculotendon kinematics. J. Electromyogr. Kinesiol. 1993, 2, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Weiss, W.; Burnfield, J.; Gronley, J. Determination of muscle and joint forces: A new technique to solve the indeterminate problem. Arch. Phys. Med. Rehabil. 2004, 85, 1335–1350. [Google Scholar]
- Cavagna, G.; Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 1977, 268, 467–481. [Google Scholar] [CrossRef]
- DeVita, P.; Helseth, J.; Hortobagyi, T. Muscles do more positive than negative work in human locomotion. J. Exp. Biol. 2007, 210, 3361–3373. [Google Scholar] [CrossRef]
- Minetti, A. A model equation for the prediction of mechanical internal work of terrestrial locomotion. J. Biomech. 1998, 31, 463–468. [Google Scholar] [CrossRef]
- Cavagna, G.; Saibene, F.; Margaria, R. Mechanical work in running. J. Appl. Physiol. 1964, 19, 249–256. [Google Scholar] [CrossRef]
- Jacobs, R.; Bobbert, M.; van Ingen Schenau, G. Function of mono- and biarticular muscles in running. Med. Sci. Sports Exerc. 1993, 25, 1163–1173. [Google Scholar] [CrossRef]
- Hof, A.; Pronk, C.; van Best, J. Comparison between EMG to force processing and kinetic analysis for the calf muscle moment in walking and stepping. J. Biomech. 1987, 20, 167–178. [Google Scholar] [CrossRef]
- Hof, A. Assessment of muscle force in complex movements by EMG. In Biomechanics XI-A; deGroot, G., Hollander, A., Huijing, P., van Ingen Schenau, G., Eds.; University Park Press: Amsterdam, The Netherlands, 1990; pp. 111–117. [Google Scholar]
- Hof, A.; van den Berg, J. EMG to force processing I: An electrical analogue of the Hill muscle model. J. Biomech. 1981, 14, 747–758. [Google Scholar] [CrossRef]
- Hof, A.; van den Berg, J. EMG to force processing II: Estimation of parameters of the Hill muscle model for the human triceps surae by means of a calfergometer. J. Biomech. 1981, 14, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.; van den Berg, J. EMG to force processing III: Estimation of model parameters for the human triceps surae muscle and assessment of the accuracy by means of a torque plate. J. Biomech. 1981, 14, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.; van den Berg, J. EMG to force processing IV: Eccentric-concentric contractions on a spring-flywheel set up. J. Biomech. 1981, 14, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.; Thelen, D.; Schwartz, M.; Anderson, F.; Delp, S. Muscular coordination of knee motion during the terminal-swing phase of normal gait. J. Biomech. 2007, 40, 3314–3324. [Google Scholar] [CrossRef]
- Sasaki, K.; Neptune, R.; Kautz, S. The relationships between muscle, external, internal and joint mechanical work during normal walking. J. Exp. Biol. 2009, 212, 738–744. [Google Scholar] [CrossRef]
- Sadeghi, H.; Allard, P.; Labelle, R.; Aissaoui, R.; Sadeghi, S.; Perrault, R. Relationship between ankle frontal muscle powers and three-D gait patterns. Am. J. Phys. Med. Rehabil. 2002, 81, 429–436. [Google Scholar] [CrossRef]
- Siegel, K.; Kepple, T.; Stanhope, S. Joint moment control of mechanical energy flow during normal gait. Gait Posture 2004, 19, 69–75. [Google Scholar] [CrossRef]
- Olney, S.; Griffin, M.; Monga, T.; McBride, I. Work and power in gait of stroke patients. Arch. Phys. Med. Rehabil. 1991, 72, 309–314. [Google Scholar]
- Vardaxis, V.; Allard, P.; Lachance, R.; Duhaime, M. Classification of able-bodied gait by using 3-D muscle powers. Hum. Mov. Sci. 1998, 17, 121–136. [Google Scholar] [CrossRef]
- Norris, J.; Granata, K.; Mitros, M.; Byrne, E.; Marsh, A. Effect of augmented plantar flexion power on preferred walking speed and economy in young and older adults. Gait Posture 2007, 25, 620–627. [Google Scholar] [CrossRef]
- Sadeghi, H.; Sadeghi, S.; Allard, P.; Labelle, H.; Duhaime, M. Lower limb muscle power relationships in bilateral able-bodied gait. Am. J. Phys. Med. Rehabil. 2001, 80, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Gitter, A.; Czerniecki, J.; DeGroot, D. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am. J. Phys. Med. Rehabil. 1991, 70, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.; Torburn, L.; Perry, J.; Ayyappa, E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch. Phys. Med. Rehabil. 1994, 75, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.; MacPhail, H.; Hedden, D.; Boyce, W. Work and power in hemiplegic cerebral palsy gait. Phys. Ther. 1990, 70, 431–438. [Google Scholar] [CrossRef]
- Kim, D.; KaLantri, A.; Guha, S.; Wainapel, S. Dorsal cutaneous nerve conduction: Diagnostic aid in ulnar neuropathy. Arch. Neurol. 1981, 38, 321–322. [Google Scholar] [CrossRef]
- Hof, A.; van den Berg, J. EMG to force processing under dynamic conditions. In Biomechanics VI-A; Komi, P., Ed.; University Park Press: Baltimore, MD, USA, 1978; pp. 221–228. [Google Scholar]
- Seirig, A.; Arkivar, R. A mathematical model for evaluation of forces in lower extremities of the musculo-skeletal system. J. Biomech. 1973, 6, 313–326. [Google Scholar] [CrossRef]
- Chao, E.-S.; Rim, K. Application of optimization principles in determining the applied moments in human leg joints during gait. J. Biomech. 1973, 6, 497–510. [Google Scholar] [CrossRef]
- Davy, D.; Audu, M. A dynamic optimization technique for predicting muscle foeces in the swing phae of gait. J. Biomech. 1987, 20, 187–201. [Google Scholar] [CrossRef]
- Herzog, W.; Leonard, T. Validation of optimization models that estimate forces exerted by synergistic muscles. J. Biomech. 1991, 24, 331–339. [Google Scholar] [CrossRef]
- Pedotti, A.; Krishnan, V.V.; Stark, L. Optimization of muscle-force sequencing in human locomotion. Math. Biosci. 1978, 38, 57–76. [Google Scholar] [CrossRef]
- Flaxman, T.; Speirs, A.; Benoit, D. Joint stabilizers of moment actuators: The role of knee joint muscles while weight-bearing. J. Biomech. 2012, 45, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Falconer, K.; Winters, D. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar] [PubMed]
- Hughes, R.; Bean, J.; Chaffin, D. Evaluating the effect of co-contraction in optimization models. J. Biomech. 1995, 7, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Hatze, H. The complete optimization of a human motion. Math. Biosci. 1976, 28, 99–135. [Google Scholar] [CrossRef]
- McGill, S.; Chaimberg, J.; Frost, D.; Fenwick, C. Evidence of a double peak in muscle activation to enhance strike speed and force: An example with elite mixed martial arts fighters. J. Strength Cond. Res. 2010, 24, 348–357. [Google Scholar] [CrossRef]
- Bogey, R.; Perry, J.; Gitter, A. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 302–310. [Google Scholar] [CrossRef]
- Bogey, R. An EMG-to-force processing approach to estimating knee muscle forces during adult, self-selected speed gait. Bioengineering 2023, 10, 980. [Google Scholar] [CrossRef]
- Bogey, R.; Barnes, L. An EMG-to-force processing approach for estimating in vivo hip forces in normal adult walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 25, 1172–1179. [Google Scholar] [CrossRef]
- Bogey, R.; Gitter, A.; Barnes, L. Determination of ankle muscle power in normal gait using an EMG-to-force processing approach. J. Electromyogr. Kinesiol. 2010, 20, 46–54. [Google Scholar] [CrossRef]
- Bogey, R.; Barnes, L. Estimates of individual muscle power production in normal walking. J. Neuroeng. Rehabil. 2017, 14, 92–100. [Google Scholar] [CrossRef]
- Murray, M. Gait as a total pattern of movement. Am. J. Phys. Med. 1967, 46, 290–326. [Google Scholar] [PubMed]
- Perry, J.; Bekey, G. EMG-Force relationships in skeletal muscle. CRC Crit. Rev. Biomed. Eng. 1981, 7, 1–22. [Google Scholar]
- Arsenault, A.; Winter, D.; Marteniuk, R. Is there a ‘normal’ profile of EMG activity in gait? Med. Biol. Eng. Comput. 1986, 24, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Dempster, W. Space requirements of the seated operator. Geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs. In Aero Medical Laboratory; WADC Technical Report 55–159; Wright Air Development Center, Air Research and Development Command, Wright-Patterson Air Force Base: Dayton, OH, USA, 1955; pp. 1–253. [Google Scholar]
- Delp, S.; Loan, J.; Hoy, M.; Zajak, F.; Topp, E.; Rosen, J. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef]
- Delp, S.; Loan, J. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 1995, 25, 21–34. [Google Scholar] [CrossRef]
- Fox, M.; Reinbolt, J.; Ounpuu, S.; Delp, S. Mechanisms of improved knee function after rectus femoris transfer surgery. J. Biomech. 2009, 42, 614–619. [Google Scholar] [CrossRef]
- Hill, A. The heat of shortening and the dynamic constants in muscle. Proc. R. Soc. (Biol.) 1938, 126, 136–195. [Google Scholar]
- Hoy, H.; Zajac, F.; Gordon, M. A musculoskeletal model of the human lower extremity: The effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 1990, 23, 157–169. [Google Scholar] [CrossRef]
- Wickiewicz, T.; Roy, R.; Powell, P.; Edgerton, V. Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 1983, 179, 275–283. [Google Scholar] [CrossRef]
- Friedrich, J.; Brand, R. Muscle fiber architecture in the human lower limb. J. Biomech. 1990, 23, 91–95. [Google Scholar] [CrossRef]
- Gordon, A.; Huxley, A.; Julian, P. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. 1966, 184, 170–192. [Google Scholar] [CrossRef] [PubMed]
- Page, S.; Huxley, H. Filament lengths in striated muscle. J. Cell Biol. 1963, 19, 369–390. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G. Storage and utilization of elastic energy in skeletal muscle. Exerc. Sports Sci. Rev. 1977, 5, 89–129. [Google Scholar] [CrossRef]
- Park, T.; Harris, G. Guided intramuscular fine wire electrode placement: A new technique. Am. J. Phys. Med. Rehabil. 1996, 75, 232–234. [Google Scholar] [CrossRef]
- Basmajian, J.; Stedio, G. A new bipolar indwelling electrode for electromyography. J. Appl. Physiol. 1962, 17, 849–858. [Google Scholar] [CrossRef]
- Perry, J.; Hoffer, M. Preoperative and postoperative dynamic electromyography as an aid in planning tendon transfers in children with Cerebral Palsy. J. Bone Jt. Surg. 1977, 59, 531–537. [Google Scholar] [CrossRef]
- Hislop, H.; Montgomery, J. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination; WB Saunders Company: Philadelphia, PA, USA, 2007. [Google Scholar]
- Perry, J.; Ireland, M.; Gronley, J.; Hoffer, M. Predictive value of manual muscle testing and gait analysis in normal ankles by electromyography. Foot Ankle 1986, 6, 254–259. [Google Scholar] [CrossRef]
- Perry, J.; Bontrager, E.; Bogey, R.; Gronley, J.; Barnes, L. The Rancho EMG Analyzer: A computerized system for gait analysis. J. Biomed. Eng. 1993, 15, 487–496. [Google Scholar] [CrossRef]
- Bogey, R.; Barnes, L.; Perry, J. A computer algorithm for determining the group electromyographic profile from individual gait EMG profiles. Arch. Phys. Med. Rehabil. 1993, 74, 286–291. [Google Scholar]
- Milner-Brown, H.; Stein, R. The relation between the surface electromyogram and muscular force. J. Physiol. 1975, 246, 549–569. [Google Scholar] [CrossRef]
- Metral, S.; Cassar, G. Relationship between force and integrated EMG activity during voluntary isometric anisotonic contraction. Eur. J. Appl. Physiol. 1981, 46, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Crosby, P. Use of surface electromyography as a measure of dynamic force in human limb muscles. Med. Biol. Eng. Comput. 1978, 16, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Milner-Brown, H.; Stein, R.; Yemm, R. Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 1973, 230, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Milner-Brown, H.; Stein, R.; Yemm, R. The contractile properties of human motor units during voluntary isometric contractions. J. Physiol. 1973, 228, 285–306. [Google Scholar] [CrossRef]
- Anderson, F.; Goldberg, S.; Pandy, M.; Delp, S. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: An induced position analysis. J. Biomech. 2004, 37, 731–737. [Google Scholar] [CrossRef]
- Kerrigan, D.; Roth, R.; Riley, P. The modelling of adult spastic paretic stiff-legged gait swing period based on actual kinematic data. Gait Posture 1998, 7, 117–124. [Google Scholar] [CrossRef]
- Piazza, S.; Delp, S. The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 1996, 29, 723–733. [Google Scholar] [CrossRef]
- Yoon, Y.; Mansour, J. The passive elastic moment at the hip. J. Biomech. 1982, 15, 905–910. [Google Scholar] [CrossRef]
- Silder, A.; Heiderscheit, B.; Thelen, D. Active and passive contributions to joint kinetics during walking in older adults. J. Biomech. 2008, 41, 1520–1527. [Google Scholar] [CrossRef]
- Perry, J. Gait Analysis: Normal and Pathological Function; McGraw-Hill, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Neptune, R.; Zajac, F.; Kautz, S. Muscle force redistributes segmental power for body progression during walking. Gait Posture 2004, 19, 194–205. [Google Scholar] [CrossRef]
- Pandy, M.; Andriacchi, T. Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 2010, 12, 401–433. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R. Experimental Design: Procedures for the Behavioral Sciences; Wadsworth Publishing Company: Belmont, CA, USA, 1968; p. 577. [Google Scholar]
- Griffiths, R. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: The role of tendon compliance. J. Physiol. 1991, 436, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Bodine-Fowler, S.; Garfinkel, A.; Roy, R. Spatial distribution of muscle fibers within the territory of a motor unit. Muscle Nerve 1990, 13, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Bouisset, S.; Maton, B. Quantitative relationship between surface EMG and intramuscular electromyographic activity in voluntary muscle. Am. J. Phys. Med. 1972, 51, 285–295. [Google Scholar]
- Perry, J.; Easterday, C.; Antonelli, D. Surface versus intramuscular electrodes for electromyography of superficial and deep muscles. Phys. Ther. 1981, 61, 7–15. [Google Scholar] [CrossRef]
- Kadaba, M.; Wooten, M.; Gainey, J.; Cochran, G. Repeatability of phasic muscle activity: Performance of surface and intramuscular wire electrodes in gait analysis. J. Orthop. Res. 1985, 3, 350–359. [Google Scholar] [CrossRef]
- Bradford, J.; Tweedell, A.; Leahy, L. High-density surface and intramuscular EMG data from the tibialis anterior during dynamic contractions. Sci. Data 2023, 10, 434. [Google Scholar] [CrossRef]
- Hofste, A.; Soer, R.; Salomons, E.; Peuscher, J.; Wolff, A.; van der Hoeven, H. Intramuscular EMG versus surface EMG of lumbar multifidus and erector spinae in healthy participants. Spine 2020, 45, E1319–E1325. [Google Scholar] [CrossRef]
- Bogey, R.; Cerny, K.; Mohammed, O. Repeatability of wire and surface electrodes in gait. Am. J. Phys. Med. Rehabil. 2003, 82, 338–344. [Google Scholar] [CrossRef]
- Delp, S.; Ringewski, D.; Carroll, N. Transfer of the rectus femoris: Effects of transfer site on moment arms about the knee and hip. J. Biomech. 1994, 27, 1201–1211. [Google Scholar] [CrossRef]
- Delp, S.; Slater, K.; Carroll, N. Preserving plantarflexion strength after surgical treatment for contracture of the triceps surae: A computer simulation study. J. Orthop. Res. 1994, 13, 96–104. [Google Scholar] [CrossRef]
- Delp, S. Surgery Simulation: A Computer Graphics System to Analyze and Design Musculoskeletal Reconstructions of the Lower Limb. Doctoral Dissertation, Stanford University, Stanford, CA, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogey, R. An EMG-to-Force Processing Method for Estimating In Vivo Knee Muscle Power During Self-Selected Speed Walking in Adults. Appl. Sci. 2025, 15, 6849. https://doi.org/10.3390/app15126849
Bogey R. An EMG-to-Force Processing Method for Estimating In Vivo Knee Muscle Power During Self-Selected Speed Walking in Adults. Applied Sciences. 2025; 15(12):6849. https://doi.org/10.3390/app15126849
Chicago/Turabian StyleBogey, Ross. 2025. "An EMG-to-Force Processing Method for Estimating In Vivo Knee Muscle Power During Self-Selected Speed Walking in Adults" Applied Sciences 15, no. 12: 6849. https://doi.org/10.3390/app15126849
APA StyleBogey, R. (2025). An EMG-to-Force Processing Method for Estimating In Vivo Knee Muscle Power During Self-Selected Speed Walking in Adults. Applied Sciences, 15(12), 6849. https://doi.org/10.3390/app15126849