The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Chemically protected field |
NCP | Non-chemically protected field |
References
- Diyaolu, C.O.; Folarin, I.O. The Role of Biodiversity in Agricultural Resilience: Protecting Ecosystem Services for Sustainable Food Production. Int. J. Res. Publ. Rev. 2024, 5, 1560–1573. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. In Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. In Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Towards Stronger Food Safety Systems and Global Cooperation; WHO: Geneva, Switzerland, 2022; ISBN 978-92-4-005768-5.
- Jerzak, M.A.; Śmiglak-Krajewska, M. Globalization of the Market for Vegetable Protein Feed and Its Impact on Sustainable Agricultural Development and Food Security in EU Countries Illustrated by the Example of Poland. Sustainability 2020, 12, 888. [Google Scholar] [CrossRef]
- Lankauskienė, R.; Simonaitytė, V.; Gedminaitė-Raudonė, Ž.; Johnson, J. Addressing the European Green Deal with Smart Specialization Strategies in the Baltic Sea Region. Sustainability 2022, 14, 11912. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Akhtar, M.S.; Abdullah, S.N.A. Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–366. [Google Scholar] [CrossRef]
- He, D.C.; Ma, Y.L.; Li, Z.Z.; Zhong, C.S.; Cheng, Z.B.; Zhan, J. Crop Rotation Enhances Agricultural Sustainability: From an Empirical Evaluation of Eco-Economic Benefits in Rice Production. Agriculture 2021, 11, 91. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. The Productivity of Crop Rotation Depending on the Included Plants and Soil Tillage. Agriculture 2023, 13, 1751. [Google Scholar] [CrossRef]
- Benini, M.; Blasi, E.; Detti, P.; Fosci, L. Solving Crop Planning and Rotation Problems in a Sustainable Agriculture Perspective. Comput. Oper. Res. 2023, 159, 106316. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Volkova, E.; Jurczak, R. The Global Market for Potato and Potato Products in the Current and Forecast Period. Eur. Res. Stud. J. 2022, XXV, 740–751. [Google Scholar] [CrossRef]
- Barbaro, L.; Pontcharraud, L.; Vetilllard, F.; Guyon, D.; Jactel, H. Comparative Responses of Bird, Carabid, and Spider Assemblages to Stand and Landscape Diversity in Maritime Pine Plantation Forests. Ecoscience 2005, 12, 110–121. [Google Scholar] [CrossRef]
- Barbaś, P.; Noaema, A.H.; Sawicka, B. Potato (Solanum tuberosum L.) As A Rich Source Of Nutrients And Bioactive Compounds. J. Cell Tissue Res. 2023, 23, 7337–7355. [Google Scholar]
- Campos, H.; Ortiz, O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 9783030286835. [Google Scholar]
- Eurostat The EU Potato Sector Statistics on Production. Prices and Trade—Statistics Explained; European Union: Brussels, Belgium, 2021; Volume 16. [Google Scholar]
- Maciejczak, M.; Filipiak, T.; Gołębiewska, B.; Urbanowicz, J.; Osowski, J.; Treder, K. Differentiation of Profitability of Traditional and Innovative Potatoes Cultivation in Poland. Zagadnienia Ekon. Rolnej 2023, 377, 70–85. [Google Scholar] [CrossRef]
- Shende, V.A.; Janbandhu, K.S.; Patil, K.G. Impact of Human Beings on Environment. Int. J. Res. Biosci. Agric. Technol. 2015, 1, 23–28. [Google Scholar]
- Manickavasagam, S.; Sudhan, C.; Subramaniam, B.; Aanand, S. Bioindicators In Aquatic Environment And Their Significance. J. Aquac. Trop. 2019, 34, 73–79. [Google Scholar] [CrossRef]
- Rainio, J.; Niemela, J. Ground Beetles (Coleoptera: Carabidae) as Bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Avgın, S.S.; Luff, M.L. Ground Beetles (Coleoptera: Carabidae) as Bioindicators of Human Impact. Munis Entomol. Zool. J. 2010, 5, 209–215. [Google Scholar]
- Johan Kotze, D.; Brandmayr, P.; Casale, A.; Dauffy-Richard, E.; Dekoninck, W.; Koivula, M.J.; Lövei, G.L.; Mossakowski, D.; Noordijk, J.; Paarmann, W.; et al. Forty Years of Carabid Beetle Research in Europe—From Taxonomy, Biology, Ecology and Population Studies to Bioindication, Habitat Assessment and Conservation. Zookeys 2011, 100, 55–148. [Google Scholar] [CrossRef]
- Thiele, H.U. Carabid Beetles in Their Environments; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Holland, J.M.; Luff, M.L. The Effects of Agricultural Practices on Carabidae in Temperate Agroecosystems. Integr. Pest Manag. Rev. 2000, 5, 109–129. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th Edition—Principles, Classification Scheme and Correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.R. Biegaczowate (Carabidae). In Fauna Polski—Charakterystyka I Wykaz Gatunków; Bogdanowicz, W., Chudzicka, E., Filipiuk, I., Skibińska, E., Eds.; Muzeum i Instytut Zoologii PAN: Warszawa, Poland, 2004; Volume I, pp. 28–42. [Google Scholar]
- Hurka, K. Carabidae of the Czech and Slovak Republics; Kabournek: Zlin, Czech Republic, 1996; pp. 1–566. [Google Scholar]
- Larsson, S.G. Entwicklungstypen Und Entwicklungszeiten Der Dän Carabiden. Entomol. Meddelels 1939, 15, 270–560. [Google Scholar]
- Meijer, J. A Comparative Study of the Immigration of Carabids (Coleoptera, Carabidae) into a New Polder. Oecologia 1974, 16, 185–208. [Google Scholar] [CrossRef]
- Hammer, D.A.T.; Ryan, P.D.; Hammer, Ø.; Harper, D.A.T. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Anderson, A. New Method for Non-parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows; Centre for Biometry: Wageningen, The Netherlands, 1998; p. 352. [Google Scholar]
- Kowalska, J.; Kühne, S. Effect of biological plant protection products on beneficial insects in organic potato crops. J. Res. Appl. Agric. Eng. 2010, 55, 191–194. [Google Scholar]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The Influence of Organic and Conventional Fertilisation and Crop Protection Practices, Preceding Crop, Harvest Year and Weather Conditions on Yield and Quality of Potato (Solanum Tuberosum) in a Long-Term Management Trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef]
- Rempelos, L.; Barański, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Średnicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.S.; Hajslova, J.; et al. Effect of Climatic Conditions, and Agronomic Practices Used in Organic and Conventional Crop Production on Yield and Nutritional Composition Parameters in Potato, Cabbage, Lettuce and Onion; Results from the Long-Term NFSC-Trials. Agronomy 2023, 13, 1225. [Google Scholar] [CrossRef]
- Gabryś, B.; Kordan, B. Cultural Control and Other Non-Chemical Methods. In Insect Pests of Potato: Global Perspectives on Biology and Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 297–314. ISBN 9780128212370. [Google Scholar]
- Tang, F.H.M.; Lenzen, M.; Mcbratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Kromp, B. Carabid beetles (Coleoptera, Carabidae) as bioindicators in Biological and conventional farming in Austrian potato fields. Biol. Fertil. Soils 1990, 9, 182–187. [Google Scholar] [CrossRef]
- Kromp, B. Carabid Beetles in Sustainable Agriculture: A Review on Pest Control Efficacy, Cultivation Impacts and Enhancement. Agric. Ecosyst. Environ. 1999, 74, 187–228. [Google Scholar] [CrossRef]
- Birkhofer, K.; Fließbach, A.; Wise, D.H.; Scheu, S. Generalist Predators in Organically and Conventionally Managed Grass-Clover Fields: Implications for Conservation Biological Control. Ann. Appl. Biol. 2008, 153, 271–280. [Google Scholar] [CrossRef]
- Kosewska, A.; Nijak, K.; Nietupski, M.; Kędzior, R.; Ludwiczak, E. Effect of Plant Protection on Assemblages of Ground Beetles (Coleoptera, Carabidae) in Sugar Beet Crops in Four-Year Rotation. Acta Zool. Acad. Sci. Hung. 2020, 66, 49–68. [Google Scholar] [CrossRef]
- Šerić Jelaska, L.; Jelić, M.; Anđelić Dmitrović, B.; Kos, T. Bioaccumulation of Pesticides in Carabid Beetles in a Vineyard and Olive Grove under Integrated Pest Management. Eur. J. Entomol. 2024, 121, 269–279. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent Negative Effects of Pesticides on Biodiversity and Biological Control Potential on European Farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Dritschilo, W.; Wanner, D. Ground Beetle Abundance in Organic and Conventional Corn Fields. Environ. Entomol. 1980, 9, 629–631. [Google Scholar] [CrossRef]
- Clark, S.; Szlavecz, K.; Cavigelli, M.A.; Purrington, F. Ground Beetle (Coleoptera: Carabidae) Assemblages in Organic, No-Till, and Chisel-Till Cropping Systems in Maryland. Environ. Entomol. 2006, 35, 1304–1312. [Google Scholar] [CrossRef]
- Clark, M.S.; Luna, J.M.; Stone, N.D.; Youngman, R.R. Habitat Preferences of Generalist Predators in Reduced-Tillage Corn. J. Entomol. Sci. 1993, 28, 404–416. [Google Scholar] [CrossRef]
- Rondon, S.I.; Pantoja, A.; Hagerty, A.; Horneck, D.A. Ground Beetle (Coleoptera: Carabidae) Populations in Commercial Organic and Conventional Potato Production. Fla. Entomol. 2013, 96, 1492–1499. [Google Scholar] [CrossRef]
- Kalushkov, P.; Gueorguiev, B.; Spitzer, L.; Nedved, O. Biodiversity of Ground Beetles (Coleoptera: Carabidae) in Genetically Modified (Bt) and Conventional (Non-Bt) Potato Fields in Bulgaria. Biotechnol. Biotechnol. Equip. 2009, 23, 1346–1350. [Google Scholar] [CrossRef]
- Sowa, G.; Bednarska, A.J.; Ziółkowska, E.; Laskowski, R. Homogeneity of Agriculture Landscape Promotes Insecticide Resistance in the Ground Beetle Poecilus cupreus. PLoS ONE 2022, 17, e0266453. [Google Scholar] [CrossRef]
- Pearsons, K.A.; Tooker, J.F. Acute Toxicity of Neonicotinoid Insecticides to Ground Beetles (Coleoptera: Carabidae) from Pennsylvania. Environ. Entomol. 2025, 54, nvaf048. [Google Scholar] [CrossRef]
- Lundgren, J.; McCravy, K. Carabid Beetles (Coleoptera: Carabidae) of the Midwestern United States: A Review and Synthesis of Recent Research. Terr. Arthropod Rev. 2011, 4, 63–94. [Google Scholar] [CrossRef]
- Lovei, G.L.; Sunderland, K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, K.D. Invertebrate Pest Control by Carabids. In The agroecology of Carabid Beetles; Holland, J.M., Ed.; Intercept: Andover, UK, 2002; pp. 165–214. [Google Scholar]
- Saska, P.; Martinkova, Z.; Honek, A. Temperature and Rate of Seed Consumption by Ground Beetles (Carabidae). Biol. Control 2010, 52, 91–95. [Google Scholar] [CrossRef]
- Sądej, W.; Nietupski, M. Occurrence of Pea Aphid (Acyrthosiphon pisum Harris) on Faba Bean and Some Biotic Factors Reducing Its Numbers. Nat. Sci. 2000, 5, 73–82. [Google Scholar]
Species | Abbr. | Ecological | CP | NCP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Description | 2004 | 2008 | 2012 | 2016 | 2004 | 2008 | 2012 | 2016 | ||
Acupalpus meridianus (Linnaeus, 1767) | Acu_mer | Hz/Sb/Mpt | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Amara aenea (Degeer, 1774) | A_aen | Ph/Sb/Mpt | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 1 |
Amara bifrons (Gyllenhal, 1810) | A_bif | Hz/Ab/Mpt | 0 | 1 | 17 | 0 | 0 | 3 | 6 | 0 |
Amara convexior Stephens, 1828 | A_conv | Hz/Sb/Mpt | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
Amara plebeja (Gyllenhal, 1810) | A_ple | Ph/Sb/Mpt | 1 | 0 | 0 | 5 | 0 | 0 | 0 | 3 |
Amara similata (Gyllenhal, 1810) | A_sim | Ph/Sb/Mpt | 0 | 0 | 2 | 2 | 1 | 0 | 0 | 6 |
Anchomenus dorsalis (Pontoppidan, 1763) | Anc_dor | Mc/Sb/Mpt | 0 | 1 | 18 | 6 | 0 | 0 | 10 | 8 |
Badister bullatus (Schrank, 1798) | Ba_bul | Sc/Sb/Mpt | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Bembidion femoratum Sturm, 1825 | Be_fem | Sc/Sb/Mpt | 8 | 7 | 44 | 3 | 2 | 4 | 11 | 11 |
Bembidion lampros (Herbst, 1784) | Be_lam | Sc/Sb/Mpt | 40 | 33 | 7 | 24 | 34 | 17 | 13 | 38 |
Bembidion properans (Stephens, 1828) | Be_pro | Sc/Sb/Mpt | 40 | 34 | 19 | 45 | 30 | 36 | 15 | 65 |
Bembidion quadrimaculatum (Linnaeus, 1761) | Be_quma | Sc/Sb/Mpt | 59 | 26 | 96 | 51 | 37 | 12 | 67 | 71 |
Bembidion tetracolum Say, 1823 | Be_tet | Sc/Sb/Mpt | 24 | 34 | 39 | 8 | 13 | 16 | 8 | 18 |
Broscus cephalotes (Linnaeus, 1758) | Br_cep | Lc/Ab/Mpt | 0 | 2 | 0 | 0 | 3 | 0 | 1 | 0 |
Calathus ambiguus (Paykull, 1790) | Cal_amb | Mc/Ab/Mpt | 12 | 206 | 72 | 33 | 7 | 384 | 34 | 63 |
Calathus cinctus Motschulsky, 1850 | Cal_cin | Mc/Ab/Dpt | 0 | 25 | 4 | 2 | 0 | 55 | 5 | 0 |
Calathus erratus (Sahlberg, 1827) | Cal_err | Mc/Ab/Dpt | 2 | 2 | 2 | 0 | 2 | 1 | 0 | 3 |
Calathus fuscipes (Goeze, 1777) | Cal_fus | Mc/Ab/Dpt | 1 | 25 | 22 | 39 | 2 | 34 | 16 | 34 |
Calathus halensis (Schaller, 1783) | Cal_hal | Lc/Ab/Mpt | 2 | 2 | 18 | 5 | 1 | 6 | 24 | 6 |
Calathus melanocephalus (Linnaeus, 1758) | Cal_mel | Mc/Ab/Dpt | 0 | 18 | 13 | 8 | 0 | 36 | 11 | 11 |
Calosoma auropunctatum (Herbst, 1784) | Calo_aur | Lc/Sb/Mpt | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 |
Carabus cancellatus Illiger, 1798 | C_canc | Lc/Sb/Bpt | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
Cicindela hybrida Linnaeus, 1758 | Ci_hyb | Mc/Sb/Mpt | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 1 |
Clivina fossor (Linnaeus, 1758) | Cli_fos | Mc/Sb/Dpt | 0 | 1 | 0 | 0 | 3 | 1 | 0 | 4 |
Curtonotus aulicus (Panzer, 1797) | Cur_aul | Hz/Ab/Mpt | 0 | 0 | 1 | 0 | 0 | 3 | 10 | 1 |
Harpalus affinis (Schrank, 1781) | Har_aff | Hz/Sb/Mpt | 14 | 11 | 24 | 18 | 22 | 40 | 16 | 17 |
Harpalus autumnalis (Duftschmid, 1812) | Har_aut | Hz/Sb/Mpt | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 0 |
Harpalus distinguendus (Duftschmid, 1812) | Har_dist | Hz/Sb/Mpt | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Harpalus griseus (Duftschmid, 1812) | Har_gri | Hz/Ab/Mpt | 0 | 18 | 8 | 0 | 0 | 34 | 16 | 0 |
Harpalus rubripes (Duftschmid, 1812) | Har_rub | Hz/Sb/Mpt | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 |
Harpalus rufipes (De Geer, 1774) | Har_ruf | Hz/Ab/Mpt | 97 | 515 | 319 | 288 | 51 | 971 | 496 | 557 |
Harpalus smaragdinus (Duftschmid, 1812) | Har_smar | Hz/Sb/Mpt | 2 | 2 | 1 | 2 | 0 | 4 | 0 | 2 |
Harpalus tardus (Panzer, 1797) | Har_tar | Hz/Sb/Mpt | 0 | 4 | 2 | 1 | 1 | 7 | 1 | 0 |
Loricera pilicornis (Fabricius, 1775) | Lor_pil | Mc/Sb/Mpt | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
Microlestes minutulus (Goeze, 1777) | Mic_min | Sc/Sb/Dpt | 31 | 9 | 14 | 19 | 12 | 1 | 10 | 5 |
Poecilus cupreus (Linnaeus, 1758) | Poe_ cup | Mc/Sb/Mpt | 118 | 39 | 77 | 16 | 18 | 10 | 58 | 16 |
Poecilus lepidus (Leske, 1785) | Poe_lep | Mc/Sb/Dpt | 4 | 4 | 2 | 3 | 12 | 0 | 20 | 1 |
Poecilus versicolor (Sturm, 1824) | Poe_vers | Mc/Sb/Mpt | 4 | 3 | 2 | 0 | 1 | 0 | 0 | 0 |
Pterostichus melanarius (Illiger, 1798) | Pt_mel | Lc/Ab/Dpt | 13 | 73 | 44 | 32 | 14 | 82 | 28 | 50 |
Trechus quadristriatus (Schrank, 1781) | Tr_quad | Sc/Ab/Dpt | 3 | 43 | 5 | 2 | 4 | 45 | 4 | 3 |
Zabrus tenebrioides (Goeze, 1777) | Zab_ten | Hz/Ab/Mpt | 0 | 15 | 0 | 0 | 0 | 5 | 0 | 0 |
Number of individuals | 479 | 1155 | 875 | 618 | 271 | 1813 | 889 | 995 | ||
3127 | 3968 | |||||||||
Number of species | 23 | 28 | 29 | 25 | 22 | 27 | 30 | 25 | ||
38 | 39 |
Carabids Assemblage Parameters | Wald Statistic Results and Level of Significance (* p < 0.05, ** p < 0.01, *** p < 0.001, ns—not significant) | ||
---|---|---|---|
Treatment | Year | Treatment × Year | |
Number of individuals | 11.54 *** | 1215.19 *** | 188.24 *** |
Number of species | 0.51 ns | 41.51 *** | 13.81 ** |
Feeding strategy | |||
Hemizoophages | 42.46 *** | 832.81 *** | 51.81 *** |
Small carnivores | 21.00 *** | 3.29 ns | 40.62 *** |
Medium carnivores | 7.99 *** | 535.85 *** | 97.10 *** |
Large carnivores | 1.42 ns | 77.37 *** | 3.63 ns |
Breeding type | |||
Autumn breeders | 29.54 *** | 1594.45 *** | 67.88 *** |
Spring breeders | 32.96 *** | 50.57 *** | 48.36 *** |
Dispersion capability | |||
Macropterous | 15.63 *** | 985.73 *** | 187.63 *** |
Dimorphic | 1.29 ns | 235.99 *** | 12.97 ** |
CP | |||||
---|---|---|---|---|---|
2004 | 2008 | 2012 | 2016 | ||
NCP | 2004 | 0.56 ** | 0.99 ** | 0.94 ** | 0.77 ** |
2008 | 0.99 ** | 0.36 ns | 0.76 *** | 0.81 ** | |
2012 | 0.87 ** | 0.42 ** | 0.25 ns | 0.31 ns | |
2016 | 0.95 ** | 0.42 ** | 0.54 ** | 0.27 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosewska, A.; Kędzior, R.; Drożdżyński, D.; Nietupski, M.; Ludwiczak, E.; Bąk, B. The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation. Appl. Sci. 2025, 15, 6572. https://doi.org/10.3390/app15126572
Kosewska A, Kędzior R, Drożdżyński D, Nietupski M, Ludwiczak E, Bąk B. The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation. Applied Sciences. 2025; 15(12):6572. https://doi.org/10.3390/app15126572
Chicago/Turabian StyleKosewska, Agnieszka, Renata Kędzior, Dariusz Drożdżyński, Mariusz Nietupski, Emilia Ludwiczak, and Beata Bąk. 2025. "The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation" Applied Sciences 15, no. 12: 6572. https://doi.org/10.3390/app15126572
APA StyleKosewska, A., Kędzior, R., Drożdżyński, D., Nietupski, M., Ludwiczak, E., & Bąk, B. (2025). The Influence of Plant Protection on Carabids (Coleoptera, Carabidae) in Potato Crops Cultivated in a Four-Year Rotation. Applied Sciences, 15(12), 6572. https://doi.org/10.3390/app15126572