Experimental Investigation on Joint Effects in Rock Cutting with a Conical Pick Under Unrelieved Cutting Conditions
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Preparation of Jointed Rock Mass Specimens
2.2. Laboratory-Scale Linear Cutting Machine and Conical Pick
2.3. Laboratory-Scale Linear Cutting Machine and Cutting Tool
3. Experimental Results and Discussion
3.1. Effect of Joints on Cutting Force
3.2. Analysis of Cutting Groove Profiles
3.3. Analysis of Crack Propagation Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sapigni, M.; Berti, M.; Bethaz, E.; Busillo, A.; Cardone, G. TBM performance estimation using rock mass classifications. Int. J. Rock Mech. Min. Sci. 2002, 39, 771–788. [Google Scholar] [CrossRef]
- Hassanpour, J.; Rostami, J.; Zhao, J. A new hard rock TBM performance prediction model for project planning. Tunn. Undergr. Space Technol. 2011, 26, 595–603. [Google Scholar] [CrossRef]
- Rasouli Maleki, M. Rock Joint Rate (RJR); a new method for performance prediction of tunnel boring machines (TBMs) in hard rocks. Tunn. Undergr. Space Technol. 2018, 73, 261–286. [Google Scholar] [CrossRef]
- Salimi, A.; Rostami, J.; Moormann, C. Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms. Tunn. Undergr. Space Technol. 2019, 92, 103046. [Google Scholar] [CrossRef]
- Farrokh, E. A study of various models used in the estimation of advance rates for hard rock TBMs. Tunn. Undergr. Space Technol. 2020, 97, 103219. [Google Scholar] [CrossRef]
- Xu, H.; Gong, Q.; Lu, J.; Yin, L.; Yang, F. Setting up simple estimating equations of TBM penetration rate using rock mass classification parameters. Tunn. Undergr. Space Technol. 2021, 115, 104065. [Google Scholar] [CrossRef]
- Gong, Q.M.; Zhao, J.; Jiao, Y.Y. Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn. Undergr. Space Technol. 2005, 20, 183–191. [Google Scholar] [CrossRef]
- Gong, Q.M.; Jiao, Y.Y.; Zhao, J. Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunn. Undergr. Space Technol. 2006, 21, 46–55. [Google Scholar] [CrossRef]
- Bejari, H.; Khademi Hamidi, J. Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses. Rock Mech. Rock Eng. 2013, 46, 897–907. [Google Scholar] [CrossRef]
- Choi, S.O.; Lee, S.J. Numerical study to estimate the cutting power on a disc cutter in jointed rock mass. KSCE J. Civ. Eng. 2016, 20, 440–451. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, J.; Liu, C.; Shadabfar, M.; Zhang, J. Rock fragmentation induced by a TBM disc-cutter considering the effects of joints: A numerical simulation by DEM. Comput. Geotech. 2021, 136, 104230. [Google Scholar] [CrossRef]
- Afrasiabi, N.; Rafiee, R.; Noroozi, M. Investigating the effect of discontinuity geometrical parameters on the TBM performance in hard rock. Tunn. Undergr. Space Technol. 2019, 84, 326–333. [Google Scholar] [CrossRef]
- Yin, L.; Miao, C.; He, G.; Dai, F.; Gong, Q. Study on the influence of joint spacing on rock fragmentation under TBM cutter by linear cutting test. Tunn. Undergr. Space Technol. 2016, 57, 137–144. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Liu, B. Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mech. Rock Eng. 2018, 51, 1263–1277. [Google Scholar] [CrossRef]
- Yang, H.Q.; Li, Z.; Jie, T.Q.; Zhang, Z.Q. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn. Undergr. Space Technol. 2018, 81, 112–120. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Haque, E.; Wang, G. Effect of Joint Orientation on the Breakage Behavior of Jointed Rock Mass Loaded by Disc Cutters. Rock Mech. Rock Eng. 2021, 54, 2087–2108. [Google Scholar] [CrossRef]
- Song, K.; Yang, H.; Xie, J.; Karekal, S. An Optimization Methodology of Cutter-Spacing for Efficient Mechanical Breaking of Jointed Rock Mass. Rock Mech. Rock Eng. 2022, 55, 3301–3316. [Google Scholar] [CrossRef]
- Liu, B.; Li, B.; Zhang, L.; Huang, R.; Gao, H.; Luo, S.; Wang, T. Disc-cutter induced rock breakage mechanism for TBM excavation in rock masses with different joint shear strengths. Undergr. Space 2024, 19, 119–137. [Google Scholar] [CrossRef]
- Thuro, K.; Plinninger, R.J. Roadheader excavation performance-geological and geotechnical influences. In Proceedings of the 9th ISRM Congress, Paris, France, 25–28 August 1999. [Google Scholar]
- Gehring, K.H. A cutting comparison. Tunn. Tunn. 1989, 21, 27–30. [Google Scholar]
- Tumac, D.; Bilgin, N.; Feridunoglu, C.; Ergin, H. Estimation of rock cuttability from shore hardness and compressive strength properties. Rock Mech. Rock Eng. 2007, 40, 477–490. [Google Scholar] [CrossRef]
- Ocak, I.; Bilgin, N. Comparative studies on the performance of a roadheader, impact hammer and drilling and blasting method in the excavation of metro station tunnels in istanbul. Tunn. Underg. Space Technol. 2010, 25, 181–187. [Google Scholar] [CrossRef]
- Kahraman, E.; Kahraman, S. The performance prediction of roadheaders from easy testing methods. Bull. Eng. Geol. Environ. 2016, 75, 1585–1596. [Google Scholar] [CrossRef]
- Kahraman, S.; Sercan Aloglu, A.; Aydin, B.; Saygin, E. The needle penetration index to estimate the performance of an axial type roadheader used in a coal mine. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 37–45. [Google Scholar] [CrossRef]
- Rostami, J.; Ozdemir, L.; Neil, D.M. Performance prediction: A key issue in mechanical hard rock mining. Min. Eng. 1994, 46, 1263–1267. [Google Scholar]
- Copur, H.; Ozdemir, L.; Rostami, J. Roadheader applications in mining and tunneling industries. In Proceedings of the Annual Meeting of American Society for Mining, Metallurgy and Exploration (SME), Orlando, FL, USA, 9–11 March 1998. [Google Scholar]
- Bilgin, N.; Seyrek, T.; Erding, E.; Shahriar, K. Roadheaders glean valuable tips for istanbul metro. Tunn. Tunn. Int. 1990, 22, 29–32. [Google Scholar]
- Ebrahimabadi, A.; Goshtasbi, K.; Shahriar, K.; Cheraghi Seifabad, M. A model to predict the performance of roadheaders based on the rock mass brittleness index. J. S. Afr. Inst. Min. Metall. 2011, 111, 355–364. [Google Scholar]
- Abdolreza, Y.C.; Siamak, H.Y. A new model to predict roadheader performance using rock mass properties. J. Coal Sci. Eng. 2019, 19, 51–56. [Google Scholar] [CrossRef]
- Dibavar, B.; Kahraman, S.; Rostami, M.; Fener, M. A new rock mass cuttability classification for roadheaders used in coal mining. Min. Metall. Explor. 2023, 40, 1141–1152. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W.; Lv, L. The investigation of rock cutting simulation based on discrete element method. Geomech. Eng. 2017, 13, 977–995. [Google Scholar]
- Wang, M. Study conical pick cutting performance and fatigue life in breaking rock plate process with numerical simulation. Sci. Rep. 2024, 14, 857. [Google Scholar] [CrossRef]
- ASTM D7012-14; Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens Under Varying States of Stress and Temperatures. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D3967-08; Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens with Flat Loading Platens. ASTM International: West Conshohocken, PA, USA, 2008.
- ASTM C97/C97M-15; Standard Test Methods for Absorption and Bulk Specific Gravity of Dimension Stone. ASTM International: West Conshohocken, PA, USA, 2015.
- Kim, H.E.; Kim, M.S.; Yoo, W.K.; Kim, C.Y. Experimental investigation on the effects of cutting direction and joint spacing on the cuttability behaviour of a conical pick in jointed rock mass. Appl. Sci. 2025, 15, 4347. [Google Scholar] [CrossRef]
- Yasar, S.; Yilmaz, A.O. Drag pick cutting tests: A comparison between experimental and theoretical results. J. Rock Mech. Geotech. Eng. 2018, 10, 893–906. [Google Scholar] [CrossRef]
- Bilgin, N.; Demircin, M.A.; Copur, H.; Balci, C.; Tuncdemir, H.; Akcin, N. Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. Int. J. Rock Mech. Min. Sci. 2006, 43, 139–156. [Google Scholar] [CrossRef]
- Evans, I. Theory of the cutting force for point-attack picks. Int. J. Min. Eng. 1984, 2, 63–71. [Google Scholar] [CrossRef]
- Liu, J.; Cao, P.; Du, C.; Jiang, Z.; Liu, J. Effects of discontinuities on penetration of TBM cutters. J. Cent. South Univ. 2015, 22, 3624–3632. [Google Scholar] [CrossRef]
Material | ρ (g/cm3) | E (GPa) | ν | σc (MPa) | σt (MPa) |
---|---|---|---|---|---|
Finike limestone | 2.22 | 21.1 | 0.13 | 49.0 | 5.00 |
Cement mortar | 2.11 | 8.7 | 0.20 | 6.0 | 0.90 |
Concrete | 2.38 | 38.9 | 0.30 | 42.0 | 2.51 |
p (mm) | d (mm) | d/Js | d/p | FCm | Normalized FCm |
---|---|---|---|---|---|
3 | 3 | 0.1 | 1 | 2.64 | 1.10 |
6 | 0.2 | 2 | 1.62 | 0.67 | |
9 | 0.3 | 3 | 2.24 | 0.93 | |
12 | 0.4 | 4 | 2.27 | 0.95 | |
15 | 0.5 | 5 | 2.51 | 1.05 | |
6 | 3 | 0.1 | 0.5 | 4.91 | 1.07 |
6 | 0.2 | 1 | 4.58 | 1.00 | |
9 | 0.3 | 1.5 | 4.02 | 0.87 | |
12 | 0.4 | 2 | 4.13 | 0.90 | |
15 | 0.5 | 2.5 | 4.57 | 0.99 | |
9 | 3 | 0.1 | 0.33 | 6.94 | 0.95 |
6 | 0.2 | 0.67 | 6.39 | 0.88 | |
9 | 0.3 | 1 | 6.41 | 0.88 | |
12 | 0.4 | 1.33 | 6.11 | 0.84 | |
15 | 0.5 | 1.67 | 7.43 | 1.02 |
p (mm) | d (mm) | d/Js | d/p | FCm | Normalized FCm |
---|---|---|---|---|---|
6 | 6 | 0.1 | 1 | 4.10 | 0.89 |
12 | 0.2 | 2 | 3.52 | 0.77 | |
18 | 0.3 | 3 | 3.61 | 0.79 | |
24 | 0.4 | 4 | 3.55 | 0.77 | |
30 | 0.5 | 5 | 4.86 | 1.06 | |
9 | 6 | 0.1 | 0.67 | 7.60 | 1.04 |
12 | 0.2 | 1.33 | 5.43 | 0.74 | |
18 | 0.3 | 2 | 5.93 | 0.81 | |
24 | 0.4 | 2.67 | 5.72 | 0.78 | |
12 | 6 | 0.1 | 0.5 | 10.75 | 0.83 |
12 | 0.2 | 1 | 8.10 | 0.62 | |
18 | 0.3 | 1.5 | 7.63 | 0.59 | |
24 | 0.4 | 2 | 9.19 | 0.71 |
p (mm) | d (mm) | d/Js | d/p | FCm | Normalized FCm |
---|---|---|---|---|---|
6 | 9 | 0.1 | 1.5 | 4.73 | 1.03 |
18 | 0.2 | 3 | 3.83 | 0.83 | |
27 | 0.3 | 4.5 | 4.22 | 0.92 | |
36 | 0.4 | 6 | 3.99 | 0.87 | |
45 | 0.5 | 7.5 | 4.80 | 1.04 | |
9 | 18 | 0.2 | 2 | 5.58 | 0.76 |
27 | 0.3 | 3 | 6.08 | 0.83 | |
36 | 0.4 | 4 | 6.71 | 0.92 | |
45 | 0.5 | 5 | 7.20 | 0.99 | |
12 | 9 | 0.1 | 0.75 | 10.14 | 0.78 |
18 | 0.2 | 1.5 | 8.64 | 0.66 | |
27 | 0.3 | 2.25 | 8.84 | 0.68 | |
36 | 0.4 | 3 | 10.75 | 0.83 | |
45 | 0.5 | 3.75 | 12.10 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-E.; Kim, M.-S.; Yoo, W.-K.; Kim, C.-Y.; Yun, J.-S. Experimental Investigation on Joint Effects in Rock Cutting with a Conical Pick Under Unrelieved Cutting Conditions. Appl. Sci. 2025, 15, 5578. https://doi.org/10.3390/app15105578
Kim H-E, Kim M-S, Yoo W-K, Kim C-Y, Yun J-S. Experimental Investigation on Joint Effects in Rock Cutting with a Conical Pick Under Unrelieved Cutting Conditions. Applied Sciences. 2025; 15(10):5578. https://doi.org/10.3390/app15105578
Chicago/Turabian StyleKim, Han-Eol, Min-Seong Kim, Wan-Kyu Yoo, Chang-Yong Kim, and Ji-Seok Yun. 2025. "Experimental Investigation on Joint Effects in Rock Cutting with a Conical Pick Under Unrelieved Cutting Conditions" Applied Sciences 15, no. 10: 5578. https://doi.org/10.3390/app15105578
APA StyleKim, H.-E., Kim, M.-S., Yoo, W.-K., Kim, C.-Y., & Yun, J.-S. (2025). Experimental Investigation on Joint Effects in Rock Cutting with a Conical Pick Under Unrelieved Cutting Conditions. Applied Sciences, 15(10), 5578. https://doi.org/10.3390/app15105578