Holographic Lens Array for Solar Collector with Large Angle and Expanded Spectral Width
Abstract
:1. Introduction
2. Principle
2.1. Working Principle of HLASC
2.2. Spectral Width Expansion Within a Large Angle
3. Experimental Results
3.1. Acceptance Angle of HLASC
3.2. Spectral Width Expansion Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chemisana, D.; Collados, M.V.; Quintanilla, M.; Atencia, J. Holographic lenses for building integrated concentrating photovoltaics. Appl. Energy 2013, 110, 227–235. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Chemisana, D.; Atencia, J.; Collados, M.V. Outdoor performance evaluation of a holographic solar concentrator optimized for building integration. Appl. Energy 2019, 250, 1073–1084. [Google Scholar] [CrossRef]
- Zhou, B.C.; Pei, J.Z.; Nasir, D.M.; Zhang, J.P. A review on solar pavement and photovoltaic/thermal (PV/T) system. Transp. Res. Part D-Transp. Environ. 2021, 93, 102753. [Google Scholar] [CrossRef]
- Xue, J.L. Photovoltaic agriculture-New opportunity for photovoltaic applications in China. Renew. Sustain. Energy Rev. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Jia, L.M.; Ma, J.; Cheng, P.; Liu, Y.K. A Perspective on Solar Energy-powered Road and Rail Transportation in China. CSEE J. Power Energy 2020, 6, 760–771. [Google Scholar]
- Arancibia-Bulnes, C.A.; Peña-Cruz, M.I.; Mutuberría, A.; Díaz-Uribe, R.; Sánchez-González, M. A survey of methods for the evaluation of reflective solar concentrator optics. Renew. Sustain. Energy Rev. 2017, 69, 673–684. [Google Scholar] [CrossRef]
- Ghamari, M.; Sundaram, S. Solar Window Innovations: Enhancing Building Performance through Advanced Technologies. Energies 2014, 17, 3369. [Google Scholar] [CrossRef]
- Leutz, R.; Suzuki, A.; Akisawa, A.; Kashiwagi, T. Design of a nonimaging Fresnel lens for solar concentrators. Sol. Energy 1999, 65, 379–387. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated solar energy applications using Fresnel lenses: A review. Renew. Sustain. Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Xu, N.; Ji, J.; Sun, W.; Huang, W.Z.; Li, J.; Jin, Z.L. Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens. Appl. Energy 2016, 168, 269–281. [Google Scholar] [CrossRef]
- Ludman, J.E. Holographic Solar Concentrator. Appl. Opt. 1982, 21, 3057–3058. [Google Scholar] [CrossRef]
- Kostuk, R.K.; Rosenberg, G. Analysis and Design of Holographic Solar Concentrators. In Proceedings of the High and Low Concentration for Solar Electric Applications III, 70430I, San Diego, CA, USA, 10–14 August 2008; Volume 7043. [Google Scholar]
- Collados, M.V.; Chemisana, D.; Atencia, J. Holographic solar energy systems: The role of optical elements. Renew. Sustain. Energy Rev. 2016, 59, 130–140. [Google Scholar] [CrossRef]
- Lee, J.H.; Wu, H.Y.; Piao, M.L.; Kim, N. Holographic Solar Energy Concentrator Using Angular Multiplexed and Iterative Recording Method. IEEE Photonics J. 2016, 8, 8400511. [Google Scholar] [CrossRef]
- Zhang, D.M.; Castro, J.M.; Kostuk, R.K. One-axis tracking holographic planar concentrator systems. J. Photon. Energy 2011, 1, 015505. [Google Scholar] [CrossRef]
- Kasezawa, T.; Horimai, H.; Tabuchi, H.; Shimura, T. Holographic window for solar power generation. Opt. Rev. 2016, 23, 997–1003. [Google Scholar] [CrossRef]
- Akbari, H.; Naydenova, I.; Martin, S. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications. Appl. Opt. 2014, 53, 1343–1353. [Google Scholar] [CrossRef]
- Akbari, H.; Naydenova, I.; Ahmed, H.; McCormack, S.; Martin, S. Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy. Sol. Energy 2017, 155, 103–109. [Google Scholar] [CrossRef]
- Marín-Sáez, J.; Atencia, J.; Chemisana, D.; Collados, M.V. Full modeling and experimental validation of cylindrical holographic lenses recorded in Bayfol HX photopolymer and partly operating in the transition regime for solar concentration. Opt. Express 2018, 26, A398–A412. [Google Scholar] [CrossRef]
- Morales-Vidal, M.; Lloret, T.; Ramírez, M.G.; Beléndez, A.; Pascual, I. Green and wide acceptance angle solar concentrators. Opt. Express 2022, 30, 25366–25379. [Google Scholar] [CrossRef]
- Khan, A.A.; Yadav, H.L. Recording and analysis of off-axis multiplexed volume holographic lens for wavelength selective wide acceptance angle operation in concentrator photovoltaics. Opt. Eng. 2023, 62, 085130. [Google Scholar] [CrossRef]
- Morales-Vidal, M.; Lloret, T.; Nieto-Rodríguez, B.; García-Vázquez, J.C.; Berramdane, K.; Calzado, E.M.; Pascual, I. Development of high efficiency and wide acceptance angle holographic solar concentrators for breakthrough photovoltaic applications. In Proceedings of the Holography: Advances and Modern Trends VIII, 125740C, Prague, Czech Republic, 24–28 April 2023; Volume 12574. [Google Scholar]
- Lloret, T.; Morales-Vidal, M.; Nieto-Rodríguez, B.; García-Vázquez, J.C.; Beléndez, A.; Pascual, I. Building-Integrated Concentrating Photovoltaics based on a low-toxicity photopolymer. J. Phys. Energy 2024, 6, 015017. [Google Scholar] [CrossRef]
- Kao, H.X.; Ma, J.S.; Wang, C.C.; Wu, T.H.; Su, P. Crosstalk-reduced double-layer half-divided volume holographic concentrator for solar energy concentratio. Sensors 2020, 20, 6093. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.; Chan, P.S.; Sun, C.M.; Ho, C.W.; Tam, W.Y. Doubly slanted layer structures in holographic gelatin emulsions: Solar concentrators. J. Opt. 2010, 12, 045104. [Google Scholar] [CrossRef]
- Vorndran, S.; Chrysler, B.; Kostuk, R.K. Comparison of holographic lens and filter systems for lateral spectrum splitting. In Proceedings of the Next Generation Technologies for Solar Energy Conversion VII, 99370K, San Diego, CA, USA, 28 August–1 September 2016; Volume 9937. [Google Scholar]
- Chrysler, B.D.; Wu, Y.C.; Yu, Z.S.; Kostuk, R.K. Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination. In Proceedings of the Next Generation Technologies for Solar Energy Conversion VIII, 103680G, San Diego, CA, USA, 6–10 August 2017; Volume 10368. [Google Scholar]
- Chrysler, B.D.; Kostuk, R.K. High energy yield bifacial spectrum-splitting photovoltaic system. Appl. Opt. 2020, 59, G8–G18. [Google Scholar] [CrossRef]
- Wang, C.C.; Ma, J.S.; Kao, H.X.; Wu, T.H.; Su, P. Wide-band high concentration-ratio volume-holographic grating for solar concentration. Sensors 2020, 20, 6080. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, G.; Marczynski, R.; Signerski, R. Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination. Mater. Sci. Semicond. Process. 2020, 107, 104812. [Google Scholar] [CrossRef]
- Ranjan, R.; Ghosh, A.; Nirala, A.K.; Yadav, H.L. Tuning of suitable solar spectrum onto photocatalytic materials of the matched band gap using optical engineering. Opt. Appl. 2015, 45, 237–247. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Xu, Y.; Xu, H.; Liu, J. Holographic Lens Array for Solar Collector with Large Angle and Expanded Spectral Width. Appl. Sci. 2025, 15, 5354. https://doi.org/10.3390/app15105354
Wang C, Xu Y, Xu H, Liu J. Holographic Lens Array for Solar Collector with Large Angle and Expanded Spectral Width. Applied Sciences. 2025; 15(10):5354. https://doi.org/10.3390/app15105354
Chicago/Turabian StyleWang, Changyu, Yuan Xu, Hong Xu, and Juan Liu. 2025. "Holographic Lens Array for Solar Collector with Large Angle and Expanded Spectral Width" Applied Sciences 15, no. 10: 5354. https://doi.org/10.3390/app15105354
APA StyleWang, C., Xu, Y., Xu, H., & Liu, J. (2025). Holographic Lens Array for Solar Collector with Large Angle and Expanded Spectral Width. Applied Sciences, 15(10), 5354. https://doi.org/10.3390/app15105354