Effect of Sugarcane Bagasse, Softwood, and Cellulose on the Mechanical, Thermal, and Morphological Properties of PP/PE Blend
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Extraction of Cellulose from SCB and SW
2.3. Sample Composition of SCB and SW
2.4. Preparation of Blend Composites
3. Characterization
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. X-ray Diffraction (XRD)
3.3. Thermogravimetric Analysis (TGA)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Scanning Electron Microscopy (SEM)
3.6. Dynamic Mechanical Analysis (DMA)
4. Results
4.1. Sample Compositions of SCB and SW
4.2. Scanning Electron Microscopy
4.3. Fourier-Transform Infrared Spectroscopy
4.4. X-ray Powder Diffraction
4.5. Thermogravimetric Analysis
4.6. Differential Scanning Calorimetry
4.7. Dynamic Mechanical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bledzki, A.K.; Letman, M.; Viksne, A.; Rence, L. A comparison of compounding processes and wood type for wood fibre-PP composites. Compos. Part A 2005, 36, 789–797. [Google Scholar] [CrossRef]
- Khanam, P.A.; Al-Maadeed, M.A. Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater. Des. 2014, 60, 532–539. [Google Scholar] [CrossRef]
- Devadiga, D.G.; Bhat, K.S.; Mahesha, G.T.; Sánchez, J. Sugarcane bagasse fiber reinforced composites: Recent advances and applications. Cogent Eng. 2020, 7, 1823159. [Google Scholar] [CrossRef]
- Palange, C.; Johns, M.A.; Scurr, D.J.; Phipps, J.S.; Eichhorn, S.J. The effect of the dispersion of microfibrillated cellulose on the mechanical properties of melt-compounded polypropylene–polyethylene co-polymer. Cellulose 2019, 26, 9645–9659. [Google Scholar] [CrossRef]
- Madhu, S.; Devarajan, Y.; Natrayan, L. Effective utilization of waste sugarcane bagasse filler-reinforced glass fibre epoxy composites on its mechanical properties—waste to sustainable production. Bio-Mass Convers. Biorefin. 2023, 13, 15111–15118. [Google Scholar] [CrossRef]
- Hammache, Y.; Serier, A.; Chaoui, S. The effect of thermoplastic starch on the properties of polypropylene/high density polyethylene blend reinforced by nano-clay. Mater. Res. Express 2020, 7, 025308. [Google Scholar] [CrossRef]
- Darweesh, M.H.; Stoll, B.; El-Taweel, S.H. Compatibilization of polypropylene/high-density polyethylene blends using poly(propylene-co-ethylene). J. Appl. Polym. Sci. 2023, 140, e53687. [Google Scholar] [CrossRef]
- Chiu, F.C.; Yen, H.Z.; Lee, C.E. Characterization of PP/HDPE blend-based nanocomposites using dif ferent maleated polyolefins as compatibilizers. Polym. Test. 2010, 29, 397–406. [Google Scholar] [CrossRef]
- Rosales, C.; Aranburu, N.; Otaegi, I.; Pettarin, V.; Bernal, C.; Müller, A.J.; Guerrica-Echevarría, G. Improving the mechanical performance of LDPE/PP blends through microfibrillation. ACS Appl. Polym. Mater. 2022, 4, 3369–3379. [Google Scholar] [CrossRef]
- Ansari, F.F.; Granda, L.A.; Joffe, R.; Berglund, L.A.; Vilaseca, F. Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Compos. Part A 2017, 96, 147–154. [Google Scholar] [CrossRef]
- Polaskova, M.; Cermak, R.; Sedlacek, T.; Kalus, J.; Obadal, M.; Saha, P. Extrusion of polyethylene/polypropylene blends with microfibrillar-phase morphology. Polym. Compos. 2010, 31, 1427–1433. [Google Scholar] [CrossRef]
- Nagamine, S.; Mizuno, Y.; Hikima, Y.; Okada, K.; Wang, L.; Ohshima, M. Reinforcement of polypropylene by cellulose microfibers modified with polydopamine and octadecylamine. J. Appl. Polym. Sci. 2021, 138, e49851. [Google Scholar] [CrossRef]
- Siengchin, S.; Dangtungee, R. Polyethylene and polypropylene hybrid composites based on nano sil icon dioxide and different flax structures. J. Thermoplast. Compos. Mater. 2014, 27, 1428–1447. [Google Scholar] [CrossRef]
- Gao, H.; Xie, Y.; Ou, R.; Wang, Q. Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites. Compos. Part A 2012, 43, 150–157. [Google Scholar] [CrossRef]
- Dikobe, D.G.; Luyt, A.S. Thermal and mechanical properties of PP/HDPE/wood powder and MAPP/HDPE/wood powder polymer blend composites. Thermochim. Acta 2017, 654, 40–50. [Google Scholar] [CrossRef]
- Taufiq, M.J.; Mansor, M.R.; Mustafa, Z. Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend. Compos. Struct. 2018, 189, 510–515. [Google Scholar] [CrossRef]
- Su, B.; Zhou, Y.G.; Wu, H.H. Influence of mechanical properties of polypropylene/low-density polyethylene nanocomposites: Compatibility and crystallization. Nanomater. Nanotechnol. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Sarker, B.; Dey, K. Effect of incorporation of polypropylene on the physico-mechanical and thermo-mechanical properties of gelatin fiber based linear low density polyethylene bio-foamed composite. J. Thermoplast. Compos. Mater. 2011, 24, 679–694. [Google Scholar] [CrossRef]
- Fang, C.; Nie, L.; Liu, S.; Yu, R.; An, N.; Li, S. Characterization of polypropylene–polyethylene blends made of waste materials with compatibilizer and nano-filler. Compos. Part B 2013, 55, 498–505. [Google Scholar] [CrossRef]
- Mohomane, S.M.; Motaung, T.E.; Revaprasadu, N. Thermal degradation kinetics of sugarcane bagasse and softwood cellulose. Materials 2017, 10, 1246. [Google Scholar] [CrossRef]
- Costa, L.A.D.; Fonêsca, A.F.; Pereira, F.V.; Druzian, J.I. Extraction and characterization of cellulose nanocrystals from corn stover. Cell. Chem. Technol. 2015, 49, 127–133. [Google Scholar]
- Lin, J.H.; Pan, Y.J.; Liu, C.F.; Huang, C.L.; Hsieh, C.T.; Chen, C.K.; Lin, Z.I.; Lou, C.W. Preparation and compatibility evaluation of polypropylene/high density polyethylene polyblends. Materials 2015, 8, 8850–8859. [Google Scholar] [CrossRef] [PubMed]
- Dikobe, D.G.; Luyt, A.S. Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym. Lett. 2010, 11, 729–741. [Google Scholar] [CrossRef]
- Moubarik, A.; Grimi, N.; Boussetta, N. Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Compos. Part B 2013, 52, 233–238. [Google Scholar] [CrossRef]
- El-Fattah, A.A.; El-Demerdash, A.G.M.; Sadik, W.A.A.; Bedir, A. The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. J. Compos. Mater. 2015, 49, 3251–3262. [Google Scholar] [CrossRef]
- Zulkifli, N.I.; Samat, N.; Anuar, H.; Zainuddin, N. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites. J. Mater. Des. 2015, 69, 114–123. [Google Scholar] [CrossRef]
- Manzato, L.; Rabelo, L.C.A.; de Souza, S.M.; da Silva, C.G.; Sanches, E.A.; Rabelo, D.; Mariuba, L.A.M.; Simonsen, J. New approach for extraction of cellulose from tucuma’s endocarp and its structural characterization. J. Mol. Struct. 2017, 1143, 229–234. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Azid, M.K.A.; Ariff, A.H.M.; Sudari, A.K. Influence of surface treatment on tensile properties of low-density polyethylene/cellulose woven biocomposites: A preliminary study. Polymers 2014, 6, 2345–2356. [Google Scholar] [CrossRef]
- Spoljaric, S.; Genovese, A.; Shanks, R.A. Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos. Part A 2009, 40, 791–799. [Google Scholar] [CrossRef]
Formulation | Fiber Type | Fiber Content | Blend Content |
---|---|---|---|
PP/PE (90/10) | - | - | 100 |
PP/PE/SCB untreated | SCB untreated | 5 | 95 |
PP/PE/SCB cell 5% | SCB cellulose | 5 | 95 |
PP/PE/SW untreated | SW untreated | 5 | 95 |
PP/PE/SW cell 5% | SW cellulose | 5 | 95 |
Sample | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
SCB | 39.75 ± 0.7 | 38.03 ± 0.1 | 22.01 ± 0.6 |
SW | 40.00 ± 0.5 | 24.00 ± 0.1 | 37.0 0.5 |
Sample | Deconvolution CI (%) | Peak Height CI (%) | CS (nm) |
---|---|---|---|
PP/PE | 61.2 | 27.30 | 14.64 |
PP/PE/SCB untreated 5% | 32.6 | 24.79 | 22.27 |
PP/PE/SCB cellulose 5% | 24.9 | 21.94 | 23.27 |
PP/PE/SW untreated 5% | 27.9 | 23.80 | 30.60 |
PP/PE/SW cellulose 5% | 21.8 | 17.07 | 34.7 |
Sample | Peak 1 (°C) | Peak 2 (°C) |
---|---|---|
PP/PE | 402.79 | 483.79 |
PP/PE/SCB untreated 5% | 358.54 | 466.88 |
PP/PE/SCB cellulose 5% | 347.89 | 456.86 |
PP/PE/SW untreated 5% | 367.68 | 466.76 |
PP/PE/SW cellulose 5% | 350.86 | 461.99 |
Crystallization | Melting | ∆Hobs/(J/g) | (∆Hcalc) | Xc/% | |||||
---|---|---|---|---|---|---|---|---|---|
Composition | PE | PP | PE | PP | PE | PP | PE | PP | PP/PE |
PP/PE | 119.18 | 97.39 | 109.92 | 163.16 | 22.54 | 74.14 | 2.25 | 66.73 | 44.47 |
PP/PE/SCB untreated 5% | 118.71 | 97.49 | 109.83 | 162.43 | 16.37 | 66.57 | 1.23 | 58.25 | 40.36 |
PP/PE/SCB cellulose 5% | 119.10 | 97.55 | 110.27 | 163.67 | 19.79 | 68.31 | 1.48 | 59.77 | 42.87 |
PP/PE/SW untreated 5% | 117.47 | 97.18 | 110.12 | 162.21 | 16.48 | 66.89 | 1.24 | 58.53 | 40.57 |
PP/PE/SW cellulose 5% | 117.67 | 97.54 | 110.46 | 163.02 | 17.3 | 67.9 | 1.29 | 59.41 | 41.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohomane, S.M.; Motaung, T.E. Effect of Sugarcane Bagasse, Softwood, and Cellulose on the Mechanical, Thermal, and Morphological Properties of PP/PE Blend. Appl. Sci. 2024, 14, 2751. https://doi.org/10.3390/app14072751
Mohomane SM, Motaung TE. Effect of Sugarcane Bagasse, Softwood, and Cellulose on the Mechanical, Thermal, and Morphological Properties of PP/PE Blend. Applied Sciences. 2024; 14(7):2751. https://doi.org/10.3390/app14072751
Chicago/Turabian StyleMohomane, Samson M., and Tshwafo E. Motaung. 2024. "Effect of Sugarcane Bagasse, Softwood, and Cellulose on the Mechanical, Thermal, and Morphological Properties of PP/PE Blend" Applied Sciences 14, no. 7: 2751. https://doi.org/10.3390/app14072751
APA StyleMohomane, S. M., & Motaung, T. E. (2024). Effect of Sugarcane Bagasse, Softwood, and Cellulose on the Mechanical, Thermal, and Morphological Properties of PP/PE Blend. Applied Sciences, 14(7), 2751. https://doi.org/10.3390/app14072751