Special Issue “Biomechanics and Human Motion Analysis”
1. Introduction
2. An Overview of the Published Articles
3. Conclusions and Future Perspectives
Conflicts of Interest
List of Contributions
- Arin-Bal, G.; Bayrakci-Tunay, V.; Benedetti, M.; Leardini, A.; Vismara, F.; Belvedere, C. Novel Technologies Used in the Assessment of Patellofemoral Pain: A Scoping Review. Appl. Sci. 2023, 13, 10825. https://doi.org/10.3390/app131910825.
- Ramasamy, Y.; Usman, J.; Razman, R.; Wei, Y.; Towler, H.; King, M. A Systematic Review of the Biomechanical Studies on Shoulder Kinematics in Overhead Sporting Motions: Types of Analysis and Approaches. Appl. Sci. 2023, 13, 9463. https://doi.org/10.3390/app13169463.
- Lin, C.; Lu, H.; Lu, T.; Wang, C.; Li, J.; Kuo, M.; Hsu, H. Reconstruction of Three-Dimensional Tibiofemoral Kinematics Using Single-Plane Fluoroscopy and a Personalized Kinematic Model. Appl. Sci. 2021, 11, 9415. https://doi.org/10.3390/app11209415.
- Skvortsov, D.; Anisimov, V.; Aizenshtein, A. Experimental Study of Military Crawl as a Special Type of Human Quadripedal Automatic Locomotion. Appl. Sci. 2021, 11, 7666. https://doi.org/10.3390/app11167666.
- Watier, B.; Begue, J.; Pillet, H.; Caderby, T. Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed. Appl. Sci. 2023, 13, 10574. https://doi.org/10.3390/app131910574.
- Tang, H.; Tan, S.; Su, T.; Chiang, C.; Chen, H. Upper Body Posture Recognition Using Inertial Sensors and Recurrent Neural Networks. Appl. Sci. 2021, 11, 12101. https://doi.org/10.3390/app112412101.
- Kuo, C.; Wang, J.; Chen, S.; Lu, T.; Hsu, H. Aging Affects Multi-Objective Optimal Control Strategies during Obstacle Crossing. Appl. Sci. 2021, 11, 8040. https://doi.org/10.3390/app11178040.
- Nguyen, H.; Woo, Y.; Huynh, N.; Jeong, H. Scoring of Human Body-Balance Ability on Wobble Board Based on the Geometric Solution. Appl. Sci. 2022, 12, 5967. https://doi.org/10.3390/app12125967.
- Huang, T.; Huang, H.; Wu, K.; Pao, J.; Chen, C.; Wang, T.; Lu, T. Body’s Center of Mass Motion Relative to the Center of Pressure during Gait, and Its Correlation with Standing Balance in Patients with Lumbar Spondylosis. Appl. Sci. 2022, 12, 12915. https://doi.org/10.3390/app122412915.
- França, C.; Gouveia, É.; Coelho-e-Silva, M.; Gomes, B. A Kinematic Analysis of the Basketball Shot Performed with Different Ball Sizes. Appl. Sci. 2022, 12, 6471. https://doi.org/10.3390/app12136471.
- Peres, A.; Espada, M.; Santos, F.; Robalo, R.; Dias, A.; Muñoz-Jiménez, J.; Sancassani, A.; Massini, D.; Pessôa Filho, D. Accuracy of Hidden Markov Models in Identifying Alterations in Movement Patterns during Biceps-Curl Weight-Lifting Exercise. Appl. Sci. 2023, 13, 573. https://doi.org/10.3390/app13010573.
- Vincent, A.; Furman, H.; Slepian, R.; Ammann, K.; Di Maria, C.; Chien, J.; Siu, K.; Slepian, M. Smart Phone-Based Motion Capture and Analysis: Importance of Operating Envelope Definition and Application to Clinical Use. Appl. Sci. 2022, 12, 6173. https://doi.org/10.3390/app12126173.
- Belvedere, C.; Gill, H.; Ortolani, M.; Sileoni, N.; Zaffagnini, S.; Norvillo, F.; MacLeod, A.; Dal Fabbro, G.; Grassi, A.; Leardini, A. Instrumental Gait Analysis and Tibial Plateau Modelling to Support Pre- and Post-Operative Evaluations in Personalized High Tibial Osteotomy. Appl. Sci. 2023, 13, 12425. https://doi.org/10.3390/app132212425.
- Donno, L.; Sansone, V.; Galluzzo, A.; Frigo, C. Walking in the Absence of Anterior Cruciate Ligament: The Role of the Quadriceps and Hamstrings. Appl. Sci. 2022, 12, 8667. https://doi.org/10.3390/app12178667.
- Gonzalez-Islas, J.; Dominguez-Ramirez, O.; Lopez-Ortega, O.; Peña-Ramirez, J.; Ordaz-Oliver, J.; Marroquin-Gutierrez, F. Crouch Gait Analysis and Visualization Based on Gait Forward and Inverse Kinematics. Appl. Sci. 2022, 12, 10197. https://doi.org/10.3390/app122010197.
- Catelli, D.; Cotter, B.; Lamontagne, M.; Grammatopoulos, G. Spine, Pelvis and Hip Kinematics—Characterizing the Axial Plane in Healthy and Osteoarthritic Hips. Appl. Sci. 2021, 11, 9921. https://doi.org/10.3390/app11219921.
- Santos, D.; Massa, F.; Dominguez, J.; Morales, I.; Del Castillo, J.; Mattiozzi, A.; Simini, F. Hamstring Torque, Velocity and Power Elastic Band Measurements during Hip Extension and Knee Flexion. Appl. Sci. 2021, 11, 10509. https://doi.org/10.3390/app112210509.
- Conconi, M.; Montefiori, E.; Sancisi, N.; Mazzà, C. Modeling Musculoskeletal Dynamics during Gait: Evaluating the Best Personalization Strategy through Model Anatomical Consistency. Appl. Sci. 2021, 11, 8348. https://doi.org/10.3390/app11188348.
- De Benedictis, C. Comparison between Helical Axis and SARA Approaches for the Estimation of Functional Joint Axes on Multi-Body Modeling Data. Appl. Sci. 2022, 12, 1274. https://doi.org/10.3390/app12031274.
- Frigo, C.; Merlo, A.; Brambilla, C.; Mazzoli, D. Balanced Foot Dorsiflexion Requires a Coordinated Activity of the Tibialis Anterior and the Extensor Digitorum Longus: A Musculoskeletal Modelling Study. Appl. Sci. 2023, 13, 7984. https://doi.org/10.3390/app13137984.
References
- Dumas, R.; Moissenet, F.; Gasparutto, X.; Cheze, L. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc. Inst. Mech. Eng. H 2012, 226, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Belvedere, C.; Nardini, F.; Sancisi, N.; Conconi, M.; Parenti-Castelli, V. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J. Biomech. 2017, 62, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Alexander, E.J. Studies of human locomotion: Past, present and future. J. Biomech. 2000, 33, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Sethi, D.; Bharti, S.; Prakash, C. A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work. Artif. Intell. Med. 2022, 129, 102314. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait analysis: Clinical facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560–574. [Google Scholar] [PubMed]
- Benedetti, M.G.; Beghi, E.; De Tanti, A.; Cappozzo, A.; Basaglia, N.; Cutti, A.G.; Cereatti, A.; Stagni, R.; Verdini, F.; Manca, M.; et al. SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference. Gait Posture 2017, 58, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Hecht, G.G.; Van Rysselberghe, N.L.; Young, J.L.; Gardner, M.J. Gait Analysis in Orthopaedic Surgery: History, Limitations, and Future Directions. J. Am. Acad. Orthop. Surg. 2022, 30, e1366–e1373. [Google Scholar] [CrossRef] [PubMed]
- Hulleck, A.A.; Menoth Mohan, D.; Abdallah, N.; El Rich, M.; Khalaf, K. Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies. Front. Med. Technol. 2022, 4, 901331. [Google Scholar] [CrossRef] [PubMed]
- Klöpfer-Krämer, I.; Brand, A.; Wackerle, H.; Müßig, J.; Kröger, I.; Augat, P. Gait analysis–Available platforms for outcome assessment. Injury 2020, 51, S90–S96. [Google Scholar] [CrossRef] [PubMed]
- States, R.A.; Krzak, J.J.; Salem, Y.; Godwin, E.M.; Bodkin, A.W.; McMulkin, M.L. Instrumented gait analysis for management of gait disorders in children with cerebral palsy: A scoping review. Gait Posture 2021, 90, 1–8. [Google Scholar] [CrossRef]
- Hill, J.R.; Hong, Z.; Wall, L.B. Current Concepts in Upper-Extremity Motion Analysis: Room to Grow? J. Hand Surg. Am. 2022, 47, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Hitz, M.; Schütz, P.; Angst, M.; Taylor, W.R.; List, R. Influence of the moving fluoroscope on gait patterns. PLoS ONE 2018, 13, e0200608. [Google Scholar] [CrossRef]
- Prill, R.; Walter, M.; Królikowska, A.; Becker, R. A Systematic Review of Diagnostic Accuracy and Clinical Applications of Wearable Movement Sensors for Knee Joint Rehabilitation. Sensors 2021, 21, 8221. [Google Scholar] [CrossRef]
- Vitali, R.V.; Perkins, N.C. Determining anatomical frames via inertial motion capture: A survey of methods. J. Biomech. 2020, 106, 109832. [Google Scholar] [CrossRef] [PubMed]
- Leardini, A.; Durante, S.; Belvedere, C.; Caravaggi, P.; Carrara, C.; Berti, L.; Lullini, G.; Giacomozzi, C.; Durastanti, G.; Ortolani, M.; et al. Weight-bearing CT Technology in Musculoskeletal Pathologies of the Lower Limbs: Techniques, Initial Applications, and Preliminary Combinations with Gait-Analysis Measurements at the Istituto Ortopedico Rizzoli. Semin. Musculoskelet. Radiol. 2019, 23, 643–656. [Google Scholar] [CrossRef]
- Molavian, R.; Fatahi, A.; Abbasi, H.; Khezri, D. Artificial Intelligence Approach in Biomechanics of Gait and Sport: A Systematic Literature Review. J. Biomed. Phys. Eng. 2023, 13, 383–402. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leardini, A.; Gill, H.S.; Lu, T.-W. Special Issue “Biomechanics and Human Motion Analysis”. Appl. Sci. 2024, 14, 2191. https://doi.org/10.3390/app14052191
Leardini A, Gill HS, Lu T-W. Special Issue “Biomechanics and Human Motion Analysis”. Applied Sciences. 2024; 14(5):2191. https://doi.org/10.3390/app14052191
Chicago/Turabian StyleLeardini, Alberto, Harinderjit Singh Gill, and Tung-Wu Lu. 2024. "Special Issue “Biomechanics and Human Motion Analysis”" Applied Sciences 14, no. 5: 2191. https://doi.org/10.3390/app14052191