Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Source, Chemicals, and Reagents
2.2. Detection of AFB1 and ZEN by HPLC
2.3. Degradation of AFB1 and ZEN by the B. subtilis ZJ-2019-1 Strain
2.4. Effects of Various Factors on the Degradation of AFB1 and ZEN by B. subtilis ZJ-2019-1
2.5. Localization of B. subtilis ZJ-2019-1 Active Substances for Degradation of AFB1 and ZEN
2.6. Effects of Different Factors on the Degradation of AFB1 and ZEN by the Crude Enzymes of B. subtilis ZJ-2019-1
2.7. Detoxification of AFB1 and ZEN in Corn Gluten Meal by B. subtilis ZJ-2019-1
2.8. Statistical Analysis
3. Results
3.1. Detoxification of AFB1 and ZEN by Different Fractions of B. subtilis ZJ-2019-1
3.2. Factors Influencing the Degradation of AFB1 and ZEN by B. subtilis ZJ-2019-1
3.3. Identification of Active Components of B. subtilis ZJ-2019-1
3.4. Effects of Different Factors on AFB1 and ZEN Degradation by the Crude Enzymes of B. subtilis ZJ-2019-1
3.5. Application of B. subtilis ZJ-2019-1 in Corn Gluten Meals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D. Understanding mycotoxin-induced illness: Part 1. Altern. Ther. Health. Med. 2022, 28, 8–11. [Google Scholar] [PubMed]
- Sullivan, A.P. Mycotoxin illness: Recognition and management from functional medicine perspective. Phys. Med. Rehabil. Clin. N. Am. 2022, 33, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of ozone for degradation of mycotoxins in food: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Szabó-Fodor, J.; Fébel, H.; Romvári, R.; Kovács, M. Individual and combined haematotoxic effects of fumonisin B(1) and T-2 mycotoxins in rabbits. Food Chem. Toxicol. 2014, 72, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Di, P.D.; Iaria, C.; Capparucci, F.; Arangia, A.; Crupi, R.; Cuzzocrea, S.; Spanò, N.; Gugliandolo, E.; Peritore, A.F. Impact of mycotoxin contaminations on aquatic organisms: Toxic effect of aflatoxin B1 and fumonisin B1 mixture. Toxins 2022, 14, 518. [Google Scholar]
- Csenki, Z.; Garai, E.; Faisal, Z.; Csepregi, R.; Garai, K.; Sipos, D.K.; Szabó, I.; Kőszegi, T.; Czéh, Á.; Czömpöly, T.; et al. The individual and combined effects of ochratoxin A with citrinin and their metabolites (ochratoxin B, ochratoxin C, and dihydrocitrinone) on 2D/3D cell cultures, and zebrafish embryo models. Food Chem. Toxicol. 2021, 158, 112674. [Google Scholar] [CrossRef]
- Cheng, C.L.; Zhao, X.H.; Jiang, H.M.; Fang, J.; Tian, Y. Prevention and control technology on Aspergillus flavus and aflatoxin. Food Ind. 2018, 39, 296–300. [Google Scholar]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Jiang, M.; Peng, X.; Fang, J.; Cui, H.; Yu, Z.; Chen, Z. Effects of aflatoxin b1 on T-cell subsets and mRNA expression of cytokines in the intestine of broilers. Int. J. Mol. Sci. 2015, 16, 6945–6959. [Google Scholar] [CrossRef] [PubMed]
- Devreese, M.; De Backer, P.; Croubels, S. Overview of the most important mycotoxins for the pig and poultry husbandry. Vlaams Diergen. Tijds. 2013, 82, 171–180. [Google Scholar]
- Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. Anim. Nutr. 2016, 2, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Bai, H.; Chang, X.; Wu, Z.; Dong, W.; Ma, Q.; Yang, J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. Chemosphere 2023, 340, 139940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Kang, W.; Liu, S.; Liu, J.; Shi, M.; Wang, Y.; Liu, X.; Chen, X.; Huang, K. Aflatoxin B1 induces liver injury by disturbing gut microbiota-bile acid-FXR axis in mice. Food Chem. Toxicol. 2023, 176, 113751. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, J.; Ma, L.; Chen, L.; Guo, T.; Zhang, Y.; Dai, H.; Yu, Y. Oxidative DNA damage and multi-organ pathologies in male mice subchronically treated with aflatoxin B1. Ecotoxicol. Environ. Saf. 2019, 186, 109697. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Takemura, H.; Shim, J.Y.; Sayama, K.; Tsubura, A.; Zhu, B.T.; Shimoi, K. Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro. J. Steroid. Biochem. 2007, 103, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, W.; Zhao, X.; Chang, X.; Liu, H.; Zhou, L.; Li, J.; Cheng, R.; Wu, X.; Li, X.; et al. Zearalenone disturbs the reproductive-immune axis in pigs: The role of gut microbial metabolites. Microbiome 2022, 10, 234. [Google Scholar] [CrossRef]
- Vance, C.K.; King, E.H.; Bowers, S.D.; Ryan, P.; Walters, K.; Shappell, N.W. Reproductive performance of mares fed dietary zearalenone. Front. Vet. Sci. 2019, 6, 423. [Google Scholar] [CrossRef]
- Minervini, F.; Dell’Aquila, M.E. Zearalenone and reproductive function in farm animals. Int. J. Mol. Sci. 2008, 9, 2570–2584. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Ren, X.; Li, B.; Wang, S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. Ecotoxicol. Environ. Saf. 2021, 221, 112457. [Google Scholar] [CrossRef]
- Cai, P.; Feng, N.; Zou, H.; Gu, J.; Liu, X.; Liu, Z.; Yuan, Y.; Bian, J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. Environ. Toxicol. 2023, 38, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the immune response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Bódi, V.; Csikós, V.; Májer, T.; Tóth, A.; Dobolyi, Á.; Világi, I.; Varró, P. Zearalenone alters the excitability of rat neuronal networks after acute in vitro exposure. Neurotoxicology 2021, 86, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, I.; Audenaert, K.; De, G.L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Drouin, P.; Lepp, D.; Li, X.Z.; Zhu, H.; Castex, M.; Zhou, T. A novel microbial zearalenone transformation through phosphorylation. Toxins 2021, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.C.; Ao, X.; Lei, Y.P.; Ji, C.; Ma, Q.J. Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. Anim. Nutr. 2020, 6, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Peng, D.D.; Wang, M.; Zhang, M.D.; Huang, J.H.; Liu, N. Optimization of fermentation conditions for degradation of AFB1 by Bacillus subtilis Q125 and preliminary exploration of active substance. J. Henan Univ. Technol. Nat. Sci. Ed. 2021, 42, 9–15. [Google Scholar]
- Cserhati, M.; Kriszt, B.; Krifaton, C.; Szoboszlay, S.; Hahn, J.; Toth, S.; Nagy, I.; Kukolya, J. Mycotoxin-degradation profile of Rhodococcus strains. Int. J. Food Microbiol. 2013, 166, 176–185. [Google Scholar] [CrossRef]
- Topcu, A.; Bulat, T.; Wishah, R.; BoyacI, I.H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 2010, 139, 202–205. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Chen, Z.Y.; Liu, H.; Li, P. Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts. PLoS ONE 2017, 12, e0178810. [Google Scholar] [CrossRef]
- Zhang, J.N. Screening of Zearalenone Detoxifying Bacteria, Study and Application of Detoxifying Characteristics. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Xiang, M.X.; Liu, P.; Zhang, H.; Liu, M.; Ding, Q.; Cai, J. In vitro degradation of zearalenone by culture supernatant of Bacillus subtilis. Food Bioprocess Technol. 2023. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Tang, Q.Y.; Zhang, L.H.; Gu, M.Y.; Chu, M.; Zhu, J.; Ghenijan, O.; Sun, J.; Zhang, Z.D. Identification and degradation characteristics of a zearalenone degrading bacterium. Microbiol. China 2021, 48, 383–391. [Google Scholar]
- Yan, Y.; Zhang, X.; Chen, H.; Huang, W.; Jiang, H.; Wang, C.; Xiao, Z.; Zhang, Y.; Xu, J. Isolation and aflatoxin B1-degradation characteristics of a Microbacterium proteolyticum B204 strain from bovine faeces. Toxins 2022, 14, 525. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Yu, Y.; Han, J.; Hu, J.; He, D.; Zhang, H.; Shi, J.; Mohamed, S.R.; Dawood, D.H.; Wang, G.; et al. Isolation, characterization, and application of Clostridium sporogenes F39 to degrade zearalenone under anaerobic conditions. Foods 2022, 11, 1194. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Hu, S.; Zhong, L.; Lu, Z.; Bie, X.; Zhao, H.; Zhang, C.; Lu, F. Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from yogurt. J. Food Prot. 2019, 82, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, W.; Park, J.H.; Kim, D.; Kim, C.R.; Chung, S.; Lee, C. The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016. Toxins 2017, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Yu, J.; Xu, W.; Zheng, Y.; Zhang, Y.Z.; Sun, X.L. Isolation and mechanistic characterization of a novel zearalenone-degrading enzyme. Foods 2022, 11, 2908. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Lan, L.; Qi, G.; Hong, W.; Dong, Y.; Xiong, W.; Xiu, W.; Zhi, S. Determination of Zearalenone in Feed-High Performance Liquid Chromatographic Method with Immunoaffinity Column Clean-Up; SPC: Beijing, China, 2012. [Google Scholar]
- Yang, Y.; Zhong, W.T.; Liu, Z.H.; Xue, X.L.; Gao, Q.; Wang, D.P.; Zhang, Y.; Zhang, J. Isolation and identification of a Cytobacillus oceanisediminis strain with ochratoxin A detoxification ability. Food Control 2023, 151, 109797. [Google Scholar] [CrossRef]
- Chen, G.J.; Fang, Q.A.; Liao, Z.L.; Xu, C.W.; Liang, Z.B.; Liu, T.; Zhong, Q.P.; Wang, L.; Fang, X.; Wang, J. Detoxification of aflatoxin B1 by a potential probiotic Bacillus amyloliquefaciens WF2020. Front. Microbiol. 2022, 13, 91091. [Google Scholar] [CrossRef]
- Xu, Y.H.; Dong, H.Y.; Liu, C.X.; Lou, H.W.; Zhao, R.Y. Efficient aflatoxin B1 degradation by a novel isolate, Pseudomonas aeruginosa M-4. Food Control 2023, 149, 109679. [Google Scholar] [CrossRef]
- Yu, L.N.; Wang, M.Q.; Zhang, C.S.; Bi, J.; Sun, J.; Liu, B. Screening and identification of aflatoxin B1-degrading strains. Sci. Technol. Cereals Oils Foods 2018, 39, 167–171. [Google Scholar]
- Adebo, O.A.; Njobeh, P.B.; Sidu, S.; Tlou, M.G.; Mavumengwana, V. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains. Int. J. Food Microbiol. 2016, 233, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Gourama, H.; Bullerman, L.B. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. J. Food Prot. 1995, 58, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Krifaton, C.; Kriszt, B.; Risa, A.; Szoboszlay, S.; Cserhati, M.; Harkai, P.; Eldridge, M.; Wang, J.; Kukolya, J. Application of a yeast estrogen reporter system for screening zearalenone degrading microbes. J. Hazard. Mater. 2013, 244–245, 429–435. [Google Scholar] [CrossRef]
- Garai, E.; Risa, A.; Varga, E.; Cserhati, M.; Kriszt, B.; Urbanyi, B.; Csenki, Z. Evaluation of the multimycotoxin-degrading efficiency of Rhodococcus erythropolis NI1 strain with the three-step zebrafish microinjection method. Int. J. Mol. Sci. 2021, 22, 724. [Google Scholar] [CrossRef] [PubMed]
- Kriszt, R.; Krifaton, C.; Szoboszlay, S.; Cserhati, M.; Kriszt, B.; Kukolya, J.; Czeh, Á.; Feher-toth, S.; Torok, L.; Szoke, Z.; et al. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS ONE 2012, 7, e43608. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Yuan, Q.S.; Zhou, T.; Guo, L.P.; Jiang, W.K.; Zhou, S.H.; Yang, C.G.; Kang, C.Z. Screening of zearalenone-degrading bacteria and analysis of degradation conditions. Zhongguo Zhong Yao Za Zhi 2021, 46, 5240–5246. [Google Scholar]
- Wang, X.; Zhang, P.; Zhang, X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef]
- Xu, M.Q.; Cai, G.L.; Zhu, D.W.; Wang, L.L.; Lu, J. Isolaion and identification of strain degrading aflatoxin B1 and its application in peanut meal. China Oils Fats 2015, 40, 20–24. [Google Scholar]
- Rao, K.R.; Vipin, A.V.; Hariprasad, P.; Anu, A.K.A.; Venkateswaran, G. Biological detoxification of aflatoxin B1 by Bacillus licheniformis CFR1. Food Control 2017, 71, 234–241. [Google Scholar]
- Wang, Y.; Zhang, M.L.; Mao, Y.; Li, S.; Zhao, Y.; Li, F.; Deng, Y.; Yang, H.Q.; Zhang, Z.M. Isolation and identification of aflatoxin B1 degrading bacteria and optimization of culture conditions. J. Agric. Sci. 2015, 44, 139–143. [Google Scholar]
- Yang, S.B.; Zheng, H.C.; Xu, J.Y.; Zhao, X.Y.; Shu, W.J.; Li, X.M.; Song, H.; Ma, Y.H. New Biotransformation mode of zearalenone identified in Bacillus subtilis Y816 revealing a novel ZEN conjugate. J. Agric. Food Chem. 2021, 69, 7409–7419. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Bai, Y.G.; Huang, H.Q.; Tu, T.; Wang, Y.; Wang, Y.R.; Luo, H.Y.; Yao, B.; Su, X.Y. Degradation of aflatoxin B1 and Zearalenone by bacterial and fungal laccases in presence of structurally defined chemicals and complex natural mediators. Toxins 2019, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Su, X.Y.; Tu, T.; Zhang, J.; Wang, X.L.; Wang, Y.R.; Wang, Y.; Bai, Y.G.; Yao, B.; Luo, H.Y.; et al. Enzymatic degradation of multiple major mycotoxins by dye-decolorizing peroxidase from Bacillus subtilis. Toxins 2021, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Liu, H.J.; Wang, J.; Wang, H.Y.; Sun, C.P. Isolation, identification and preliminary application of zearalenone-degrading bacterium under acidic condition. Sci. Technol. Cereals Oils Foods 2018, 26, 60–66. [Google Scholar]
- Adegoke, T.V.; Yang, B.; Tian, X.; Yang, S.; Gao, Y.; Ma, J.; Wang, G.; Si, P.; Li, R.; Xing, F. Simultaneous degradation of aflatoxin B and zearalenone by porin and peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef]
- Pan, L.T.; Xu, S.J.; Hu, X.D.; Xu, L.M.; Shi, J.R.; Gu, Z.X.; Xu, J.H. Isolation, identification and its degradation characteristics of zearalenone-degrading bacteria. J. Chinese Cereals Oils Assoc. 2018, 33, 113–119 and 126. [Google Scholar]
- Ge, C.C.; Xiong, J.; Zhao, C.; Wang, Y.; Shen, L.; Zhang, X.L. Screening of Bacillus being able to degrade zearalenone. Sci. Technol. Cereals Oils Foods 2015, 23, 90–94. [Google Scholar]
- Hua, Z. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J. Mol. Catal. 2005, 37, 16–25. [Google Scholar]
- Xiong, D.; Wen, J.; Lu, G.; Li, T.; Long, M. Isolation, purification, and characterization of a laccase-degrading aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins 2022, 14, 250. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, Z.; An, W.; Gao, B.; Li, C.; Han, B.; Tao, H.; Wang, J.; Wang, X.; Li, H. Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone. Appl. Sci. 2024, 14, 1589. https://doi.org/10.3390/app14041589
Wu J, Wang Z, An W, Gao B, Li C, Han B, Tao H, Wang J, Wang X, Li H. Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone. Applied Sciences. 2024; 14(4):1589. https://doi.org/10.3390/app14041589
Chicago/Turabian StyleWu, Jianwen, Zhenlong Wang, Wei An, Boquan Gao, Chunxiao Li, Bing Han, Hui Tao, Jinquan Wang, Xiumin Wang, and Huanrong Li. 2024. "Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone" Applied Sciences 14, no. 4: 1589. https://doi.org/10.3390/app14041589
APA StyleWu, J., Wang, Z., An, W., Gao, B., Li, C., Han, B., Tao, H., Wang, J., Wang, X., & Li, H. (2024). Bacillus subtilis Simultaneously Detoxified Aflatoxin B1 and Zearalenone. Applied Sciences, 14(4), 1589. https://doi.org/10.3390/app14041589