Electrochemical Corrosion Resistance of Al2O3–YSZ Coatings on Steel Substrates
Abstract
:1. Introduction
2. Materials and Methods
- -
- Linear polarization for the Tafel method: potential range (−200) ÷ (+200) mV compared to the open circuit potential, potential scanning speed: dE/dt = 1 mV/s;
- -
- Cyclic polarization: potential range (−500) ÷ (+600) mV, potential scanning speed = 10 mV/s;
- -
- Electrochemical impedance spectroscopy measurements: working potential = open circuit potential, frequency range = 105 ÷ 0.1 Hz, current amplitude = 10 mV.
3. Experimental Results
4. Conclusions
- -
- The percentages of alumina and zirconia stabilised with yttria influence the porosity of the produced ceramic layers;
- -
- The interconnection of the pores leads to the surface of the metallic substrate being in contact with the electrolyte solution, a fact that leads to the formation of corrosion compounds based on hydroxides and ferrous oxides, reaching the surface of the ceramic layer;
- -
- Ceramic coatings improve the corrosion resistance of the metallic material, especially at higher percentages of YSZ in the complex layer deposited by plasma spraying;
- -
- The increased percentage of YSZ in the composite layers increases the resistance to electrochemical corrosion in acidic solutions such as acid rain, with the Al2O3–37.5% YSZ sample having an icorr thirty-seven times lower than the corrosion current of the metal substrate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Gao, W.; Dou, M.; Han, J.; Wu, D.; Zou, Y. Highly-durable plasma-sprayed Al2O3-YSZ/YSZ double ceramic layer TBCs against CMAS corrosion. J. Eur. Ceram. Soc. 2024, 44, 7328–7338. [Google Scholar] [CrossRef]
- Ramesh, M.; Marimuthu, K.; Karuppuswamy, P.; Rajeshkumar, L.N. Microstructure and properties of YSZ-Al2O3 func-tional ceramic thermal barrier coatings for military applications. Boletín La Soc. Española Cerámica Y Vidr. 2022, 61, 641–652. [Google Scholar] [CrossRef]
- Khanali, O.; Ariaee, S.; Rajabi, M.; Baghshahi, S. An investigation on the properties of YSZ/Al2O3 nanocomposite coatings on Inconel by electrophoretic deposition. J. Compos. Mater. 2018, 52, 81–89. [Google Scholar] [CrossRef]
- Ye, Y.; Li, J.; Zhou, H.; Chen, J. Microstructure and mechanical properties of yttria-stabilized ZrO2/Al2O3 nanocomposite ceramics. Ceram. Int. 2008, 34, 1797–1803. [Google Scholar] [CrossRef]
- Tingaud, O.; Bertrand, P.; Bertrand, G. Microstructure and tribological behavior of suspension plasma sprayed Al2O3 and Al2O3–YSZ composite coatings. Surf. Coat. Technol. 2010, 205, 1004–1008. [Google Scholar] [CrossRef]
- Wang, P.; Deng, S.; He, Y.; Liu, C.; Zhang, J. Oxidation and hot corrosion behavior of Al2O3/YSZ coatings prepared by cathode plasma electrolytic deposition. Corros. Sci. 2016, 109, 13–21. [Google Scholar] [CrossRef]
- Ganvir, A.; Goel, S.; Govindarajan, S.; Jahagirdar, A.R.; Björklund, S.; Klement, U.; Joshi, S. Tribological performance assessment of Al2O3-YSZ composite coatings deposited by hybrid powder-suspension plasma spraying. Surf. Coat. Technol. 2021, 409, 126907. [Google Scholar] [CrossRef]
- Zhu, C.; Javed, A.; Li, P.; Yang, F.; Liang, G.Y.; Xiao, P. A study of the microstructure and oxidation behavior of alumina/yttria-stabilized zirconia (Al2O3/YSZ) thermal barrier coatings. Surf. Coat. Technol. 2012, 212, 214–222. [Google Scholar] [CrossRef]
- Ren, C.; He, Y.D.; Wang, D.R. Preparation and characteristics of three-layer YSZ–(YSZ/Al2O3)–YSZ TBCs. Appl. Surf. Sci. 2011, 257, 6837–6842. [Google Scholar] [CrossRef]
- He, K.; Chen, J.; Weng, W.X.; Li, C.C.; Li, Q. Microstructure and mechanical properties of plasma sprayed Al2O3-YSZ composite coatings. Vacuum 2018, 151, 209–220. [Google Scholar] [CrossRef]
- Ponnapureddy, S.; Bhadauria, A.; Bajpai, S.; Tiwari, A.; Pandey, K.K.; Keshri, A.K.; Balani, K. Enhanced reliability with bimodal microstructure and transformation-induced toughening in Al2O3-YSZ based thermal barrier coatings. Surf. Coat. Technol. 2023, 462, 129488. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.; Wu, D.; Zou, Y. Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings. Corros. Sci. 2023, 221, 111369. [Google Scholar] [CrossRef]
- Dou, M.; Gao, W.; Xue, T.; Han, J.; Wu, D.; Zou, Y.; Zhang, Y. CMAS corrosion characteristics of YSZ and Al2O3-YSZ thermal barrier coatings at 1250–1350 °C. J. Eur. Ceram. Soc. 2024, 44, 116789. [Google Scholar] [CrossRef]
- Mohammadi, M.; Kobayashi, A.; Javadpour, S.; Jahromi, S.A.J. Evaluation of hot corrosion behaviors of Al2O3-YSZ composite TBC on gradient MCrAlY coatings in the presence of Na2SO4-NaVO3 salt. Vacuum 2019, 167, 547–553. [Google Scholar] [CrossRef]
- Amaya, C.; Aperador, W.; Caicedo, J.C.; Espinoza-Beltrán, F.J.; Muñoz-Saldaña, J.; Zambrano, G.; Prieto, P. Corrosion study of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) nanostructured Thermal Barrier Coatings (TBC) exposed to high temperature treatment. Corros. Sci. 2009, 51, 2994–2999. [Google Scholar] [CrossRef]
- Istrate, B.; Mareci, D.; Munteanu, C.; Stanciu, S.; Crimu, C.I.; Trinca, L.C.; Kamel, E. In vitro electrochemical properties of biodegradable YSZ-coated MgCa alloy. Environ. Eng. Manag. J. 2016, 15, 955–963. [Google Scholar]
- Abd El-Aziz, K.h. Experimental Study on Corrosion Behavior of Different ceramic Plasma Coatings In Sulfuric Acidic Solution. Int. J. Sci. Technol. Res. 2020, 9, 2277–8616. [Google Scholar]
- Istrate, B.; Mareci, D.; Munteanu, C.; Stanciu, S.; Luca, D.; Crimu, C.I.; Kamel, E. In vitro electrochemical properties of biodegradable ZrO 2 -CaO coated MgCa alloy using atmospheric plasma spraying. J. Optoelectron. Adv. Mater. 2015, 17, 1186–1192. [Google Scholar]
- Afrasiabi, A.; Saremi, M.; Kobayashi, A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ +Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 2008, 478, 264–269. [Google Scholar] [CrossRef]
- Luțcanu, M.; Coteață, M.; Bernevig, M.A.; Nechifor, C.D.; Cazacu, M.M.; Paraschiv, P.; Istrate, B.; Bădărău, G.; Cimpoeșu, N. Obtaining and analyze of Al2O3-ZrO2 ceramic layers on metallic substrate. Arch. Metall. Mater. 2022, 67, 479–485. [Google Scholar]
- Lutcanu, M.; Istrate, B.; Coteata, M.; Chicet, D.L.; Ionita, I.; Paraschiv, C.; Stirbu, I.; Badarau, G.; Cimpoesu, N. Structural aspects and chemical analyses on cutting process of metallicceramic materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1037, 012033. [Google Scholar] [CrossRef]
- Lutcanu, M.; Cimpoesu, R.; Abrudeanu, M.; Munteanu, C.; Moga, S.G.; Coteata, M.; Zegan, G.; Benchea, M.; Cimpoesu, N.; Murariu, A.M. Mechanical Properties and Thermal Shock Behavior of Al2O3-YSZ Ceramic Layers Obtained by Atmospheric Plasma Spraying. Crystals 2023, 13, 614. [Google Scholar] [CrossRef]
- Liu, X.; Ma, S.; Jia, Z.; Ramzan, M.; Meng, M.; Wang, J.; Li, C.; Zhang, Y.; Zhang, J. Complex effects of different types of acid rain on root growth of Quercus acutissima and Cunninghamia lanceolata saplings. Ecol. Process. 2022, 11, 8. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Olubambi, P.A. Corrosion and wear behaviour of rice husk ash—Alumina reinforced Al–Mg–Si alloy matrix hybrid composites. J. Mater. Res. Technol. 2013, 2, 188–194. [Google Scholar] [CrossRef]
- Ahmadi, M.S.; Shoja-Razavi, R.; Valefi, Z.; Jamali, H. The effect of laser surface treatment on the thermal shock behavior of plasma sprayed Al2O3/YSZ multilayer thermal barrier coatings. Surf. Coat. Technol. 2019, 366, 62–69. [Google Scholar] [CrossRef]
- Ramesh, M.; Marimuthu, K. Microstructural, thermal and wear behavior of YSZ/AL2O3 thermal barrier coatings for gun barrel applications. Dig. J. Nanomater. Biostructures 2020, 15, 527–536. [Google Scholar] [CrossRef]
- Dai, M.; Song, X.; Lin, C.; Liu, Z.; Zheng, W.; Zeng, Y. Investigation of microstructure changes in Al2O3-YSZ coatings and YSZ coatings and their effect on thermal cycle life. J. Adv. Ceram 2022, 11, 345–353. [Google Scholar] [CrossRef]
- Song, X.; Xu, Y.; Ding, Y.; Zhang, J.; Guo, X.; Jiang, C.; Zheng, W.; Zeng, Y. Study of microstructure, electronic structure and thermal properties of Al2O3-doped tetragonal YSZ coatings. Appl. Surf. Sci. 2021, 542, 148553. [Google Scholar] [CrossRef]
- Cotrut, C.M.; Vladescu, A.; Dinu, M.; Vranceanu, D.M. Influence of deposition temperature on the properties of hydroxyapatite obtained by electrochemical assisted deposition. Ceram. Int. 2018, 44, 669–677. [Google Scholar] [CrossRef]
- Peral, L.B.; Ebrahimzadeh, P.; Gutiérrez, A.; Fernández-Pariente, I. Effect of tempering temperature and grain refinement induced by severe shot peening on the corrosion behavior of a low alloy steel. J. Electroanal. Chem. 2023, 932, 117207. [Google Scholar] [CrossRef]
- Sun, K.; Zhong, W.; Qiu, S.; Cai, W.; Xie, X.; Wang, H.; Zhang, S.; Li, W. Study on the Microstructure, Corrosion Resistance and Dielectric Properties of Atmospheric Plasma-Sprayed Y2O3 Ceramic Coatings. Coatings 2024, 14, 377. [Google Scholar] [CrossRef]
- Predescu, C.; Pantilimon, C.; Sohaciu, M.; Matei, E.; Savastru, D.; Berbecaru, A.; Predescu, A.; Anton, M.G.; Coman, G. Investigation of the corrosion cracks in a C4 heavy transport pipeline by microscopy, fluorescence and diffraction techniques. J. Optoelectron. Adv. Mater. 2016, 8, 873–877. [Google Scholar]
- Neacsu, P.; Staras, A.I.; Voicu, S.I.; Ionascu, I.; Soare, T.; Uzun, S.; Cojocaru, V.D.; Pandele, A.M.; Croitoru, S.M.; Miculescu, F.; et al. Characterization and In Vitro and In Vivo Assessment of a Novel Cellulose Acetate-Coated Mg-Based Alloy for Orthopedic Applications. Materials 2017, 10, 686. [Google Scholar] [CrossRef]
- Moga, S.; Malinovschi, V.; Marin, A.; Coaca, E.; Negrea, D.; Craciun, V.; Lungu, M. Mechanical and corrosion-resistant coatings prepared on AZ63 Mg alloy by plasma electrolytic oxidation. Surf. Coat. Technol. 2023, 462, 129464. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Macías-García, A.; Díaz-Díez, M.A.; Brito, P.; Cardoso, D. Influence of the quality and uniformity of ceramic coatings on corrosion resistance. Ceram. Int. 2015, 41, 5138–5146. [Google Scholar] [CrossRef]
- Pavithran, N.R.; Harichandran, R.; Vignesh Kumar, D. Effect of Yttria-stabilized zirconia coating on the corrosion and thermal behaviour of additive manufactured Inconel 718 alloy. J. Alloys Compd. 2023, 968, 171877. [Google Scholar] [CrossRef]
- De la Roche, J.; Alvarado-Orozco, J.M.; Toro, A. Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts. Rare Met. 2021, 40, 1307–1316. [Google Scholar] [CrossRef]
- Bacaita, E.S.; Bejinariu, C.; Zoltan, B.; Peptu, C.; Andrei, G.; Popa, M.; Dagop, D.; Agop, M. Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour. J. Appl. Math. 2012, 2012, 653720. [Google Scholar] [CrossRef]
Elements/ Coating | Zr % | Al % | O % | Y % | Hf % | Fe % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt | at | wt | at | wt | at | wt | at | wt | at | wt | at | |
Sample 1 | 5.8 | 1.4 | 45.8 | 38.5 | 47.4 | 62.5 | 0.4 | 0.1 | 0.1 | 0.01 | 0.4 | 0.15 |
Sample 2 | 12.3 | 2.97 | 40.3 | 32.9 | 46.3 | 64.8 | 0.6 | 0.2 | 0.05 | 0.01 | 0.4 | 0.14 |
Sample 3 | 17.73 | 4.41 | 34.32 | 28.86 | 46.83 | 66.41 | 0.81 | 0.21 | 0.05 | 0.01 | 0.25 | 0.11 |
EDS Error% | 1.2 | 1.5 | 2.15 | 0.2 | 0.01 | 0.01 |
Material | Experimental Parameters Recorded During the Potentiometry Process | |||||
---|---|---|---|---|---|---|
OCP mV | E (I = 0) (mV) | icorr mA/cm2 | vcorr mpy | βc (mV/dec) | βa (mV/dec) | |
Steel substrate | −416 | −410.1 | 13.01 | 152.11 | −135 | 318 |
Sample 1 | −442 | −448.3 | 1.51 | 17.69 | −18 | 346 |
Sample 2 | −445 | −462.3 | 6.11 | 71.54 | - | 391 |
Sample 3 | −450 | −415 | 0.35 | 4.08 | −109 | −84 |
Rs Ohm/cm2 | CPE | Rct Ohm/cm2 | RL Ohm/cm2 | L H/cm2 | CPE | |||
---|---|---|---|---|---|---|---|---|
Q Ssn/cm2 | n | Q Ssn/cm2 | n | |||||
Initial | 5.18 | 0.003451 | 0.76 | 1.68 | 0.56 | 0.1357 | ||
Proba 1 | 31.93 | 0.0005059 | 0.645 | 59 | - | 1042 | 0.030 | 1 |
Proba 2 | 11.87 | 0.0001783 | 0.57 | 28 | - | 2.83 | 0.01 | 0.8 |
Proba 3 | 57.33 | 0.9390 | - | 50 | 737 | 1850 |
Sample | Fe% wt at | C% wt at | O% wt at | N% wt at | S% wt at | Al% wt at | Zr% wt at | Y% wt at | Others wt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | 80.79 | 57.25 | 5.37 | 17.7 | 8.44 | 20.87 | 0.21 | 0.59 | 0.44 | 0.54 | -- | -- | -- | -- | -- | -- | Cu: 3.74; Mn:1.02 |
Sample 1 | 0.8 | 0.3 | - | - | 47.6 | 64.4 | 0.5 | 0.8 | - | - | 39.6 | 31.7 | 10.76 | 2.6 | 0.8 | 0.2 | - |
Sample 2 | 2.2 | 0.9 | - | - | 47.1 | 62.7 | 0.2 | 0.2 | - | - | 43.9 | 34.6 | 5.9 | 1.4 | 0.7 | 0.2 | - |
Sample 3 | 0.95 | 0.4 | - | - | 47.8 | 62.8 | 0.3 | 0.4 | - | - | 44.9 | 35 | 5.3 | 1.2 | 0.7 | 0.2 | - |
EDS Er. | 2.1 | 2.5 | 3 | 0.2 | 0.1 | 1.1 | 0.25 | 0.05 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimpoeșu, R.; Luțcanu, M.; Cazac, A.M.; Adomniței, I.; Bejinariu, C.; Andrușcă, L.; Prelipceanu, M.; Cioca, L.-I.; Chicet, D.L.; Radu, A.M.; et al. Electrochemical Corrosion Resistance of Al2O3–YSZ Coatings on Steel Substrates. Appl. Sci. 2024, 14, 10877. https://doi.org/10.3390/app142310877
Cimpoeșu R, Luțcanu M, Cazac AM, Adomniței I, Bejinariu C, Andrușcă L, Prelipceanu M, Cioca L-I, Chicet DL, Radu AM, et al. Electrochemical Corrosion Resistance of Al2O3–YSZ Coatings on Steel Substrates. Applied Sciences. 2024; 14(23):10877. https://doi.org/10.3390/app142310877
Chicago/Turabian StyleCimpoeșu, Ramona, Marian Luțcanu, Alin Marian Cazac, Ionuț Adomniței, Costică Bejinariu, Liviu Andrușcă, Marius Prelipceanu, Lucian-Ionel Cioca, Daniela Lucia Chicet, Ancuța Mirela Radu, and et al. 2024. "Electrochemical Corrosion Resistance of Al2O3–YSZ Coatings on Steel Substrates" Applied Sciences 14, no. 23: 10877. https://doi.org/10.3390/app142310877
APA StyleCimpoeșu, R., Luțcanu, M., Cazac, A. M., Adomniței, I., Bejinariu, C., Andrușcă, L., Prelipceanu, M., Cioca, L.-I., Chicet, D. L., Radu, A. M., & Cimpoeșu, N. (2024). Electrochemical Corrosion Resistance of Al2O3–YSZ Coatings on Steel Substrates. Applied Sciences, 14(23), 10877. https://doi.org/10.3390/app142310877