Trend Forecasting in Swimming World Records and in the Age of World Record Holders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, M.J.; Marinho, D.A.; Santos, C.C.; Quinta-Nova, L.; Costa, A.M.; Silva, A.J.; Barbosa, T.M. The coaches’ perceptions and experience implementing a Long-Term Athletic Development model in competitive swimming. Front. Psychol. 2021, 12, 685584. [Google Scholar] [CrossRef]
- Lang, M.; Light, R. Interpreting and implementing the long term athlete development model: English swimming coaches’ views on the (swimming) LTAD in practice. Int. J. Sports Sci. Coach. 2010, 5, 389–402. [Google Scholar] [CrossRef]
- Costa, M.J.; Marinho, D.A.; Reis, V.M.; Silva, A.J.; Marques, M.C.; Bragada, J.A.; Barbosa, T.M. Tracking the performance of world-ranked swimmers. J. Sports Sci. Med. 2010, 9, 411–417. [Google Scholar]
- Costa, M.J.; Marinho, D.A.; Bragada, J.A.; Silva, A.J.; Barbosa, T.M. Stability of elite freestyle performance from childhood to adulthood. J. Sports Sci. 2011, 29, 1183–1189. [Google Scholar] [CrossRef]
- Brustio, P.R.; Cardinale, M.; Lupo, C.; Varalda, M.; De Pasquale, P.; Boccia, G. Being a top swimmer during the early career is not a prerequisite for success: A study on sprinter strokes. J. Sci. Med. Sport. 2021, 24, 1272–1277. [Google Scholar] [CrossRef]
- Born, D.P.; Lomax, I.; Rüeger, E.; Romann, M. Normative data and percentile curves for long-term athlete development in swimming. J. Sci. Med. Sport. 2022, 25, 266–271. [Google Scholar] [CrossRef]
- Allen, S.V.; Vandenbogaerde, T.J.; Hopkins, W.G. Career performance trajectories of Olympic swimmers: Benchmarks for talent development. Eur. J. Sport. Sci. 2014, 14, 643–651. [Google Scholar] [CrossRef]
- Sokolovas, G. Biological maturation of swimmers. In Proceedings of the VIIIth International Symposium on Biomechanics and Medicine in Swimming; Keskinen, K.L., Komi, P.V., Hollander, A.P., Eds.; University of Jyväskylä: Jyväskylä, Finland, 1998; pp. 315–319. [Google Scholar]
- Platonov, V. Sport Training for High-Level Swimmers; Phorte Editions: São Paulo, Brazil, 2005. [Google Scholar]
- Hopkins, W.G.; Pike, J.C.; Nottle, C. Overall trends and individual trajectories of swimming performance in a decade of New Zealand National Championships. In Proceedings of the XIth International Symposium on Biomechanics and Medicine in Swimming; Norwegian School of Sport Science: Oslo, Norway, 2010; p. 72. [Google Scholar]
- Baxter-Jones, A.D.; Sherar, L.B. Growth and maturation. In Paediatric Exercise Physiology; Armstrong, N., Ed.; Elsevier Limited: Amsterdam, The Netherlands, 2006; pp. 1–30. [Google Scholar]
- Sandbakk, Ø.; Solli, G.S.; Holmberg, H.C. Sex differences in world-record performance: The influence of sport discipline and competition duration. Int. J. Sports Physiol. Perform 2018, 13, 2–8. [Google Scholar] [CrossRef]
- Costa, A.M.; Breitenfeld, L.; Silva, A.J.; Pereira, A.; Izquierdo, M.; Marques, M.C. Genetic inheritance effects on endurance and muscle strength: An update. Sports Med. 2012, 42, 449–458. [Google Scholar] [CrossRef]
- Chase, K.I.; Caine, D.J.; Goodwin, B.J.; Whitehead, J.R.; Romanick, M.A. A prospective study of injury affecting competitive collegiate swimmers. Res. Sports Med. 2013, 21, 111–123. [Google Scholar] [CrossRef]
- Siekanska, M.; Blecharz, J. Transitions in the careers of competitive swimmers: To continue or finish with elite sport? Int. J. Environ. Res. Public Health 2020, 17, 6482. [Google Scholar] [CrossRef]
- Knechtle, B.; Bragazzi, N.L.; König, S.; Nikolaidis, P.T.; Wild, S.; Rosemann, T.; Rüst, C.A. The age in swimming of champions in World Championships (1994–2013) and Olympic Games (1992–2012): A cross-sectional data analysis. Sports 2016, 4, 17. [Google Scholar] [CrossRef]
- Rüst, C.A.; Knechtle, B.; Rosemann, T.; Lepers, R. The changes in age of peak swim speed for elite male and female Swiss freestyle swimmers between 1994 and 2012. J. Sports Sci. 2014, 32, 248–258. [Google Scholar] [CrossRef]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Lippi, G.; Banfi, G.; Favaloro, E.J.; Rittweger, J.; Maffulli, N. Updates on improvement of human athletic performance: Focus on world records in athletics. Br. Med. Bull. 2008, 87, 7–15. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Barbosa, A.C.; Simbaña Escobar, D.; Mullen, G.J.; Cossor, J.M.; Hodierne, R.; Arellano, R.; Mason, B.R. The role of the biomechanics analyst in swimming training and competition analysis. Sports Biomech. 2021, 22, 1734–1751. [Google Scholar] [CrossRef]
- Yustres Amores, I.; Santos Del Cerro, J.; González-Mohíno, F.; Hermosilla, F.; González-Ravé, J.M. Modelling performance by continents in swimming. Front. Physiol. 2023, 14, 1075167. [Google Scholar] [CrossRef]
- Colwin, C. Looking back, looking ahead. In Breakthrough Swimming; Champaign, I.L., Ed.; Human Kinetics: Champaign, IL, USA, 2002; pp. 217–228. [Google Scholar]
- Biel, K.; Fischer, S.; Kibele, A. Kinematic analysis of take-off performance in elite swimmers: New OSB11 versus traditional starting blocks. In XIth International Symposium for Biomechanics and Medicine in Swimming; Norwegian School of Sport Science: Oslo, Norway, 2010; pp. 91–92. [Google Scholar]
- Nevill, A.M.; Whyte, G.P.; Holder, R.L.; Peyrebrune, M. Are there limits to swimming world records? Int. J. Sports Med. 2007, 28, 1012–1017. [Google Scholar] [CrossRef]
- Schulz, R.; Curnow, C. Peak performance and age among superathletes: Track and field, swimming, baseball, tennis, and golf. J. Gerontol. 1988, 43, 113–120. [Google Scholar] [CrossRef]
- König, S.; Valeri, F.; Wild, S.; Rosemann, T.; Rüst, C.A.; Knechtle, B. Change of the age and performance of swimmers across World Championships and Olympic Games finals from 1992 to 2013: A cross-sectional data analysis. SpringerPlus 2014, 3, 652. [Google Scholar] [CrossRef]
- Vidal-Vilaplana, A.; Valantine, I.; Staskeviciute-Butiene, I.; González-Serrano, M.H.; Capranica, L.; Calabuig, F. Combining sport and academic career: Exploring the current state of student-athletes’ dual career research field. J. Hosp. Leis. Sport Tour. Edu. 2022, 31, 100399. [Google Scholar] [CrossRef]
- Born, D.P.; Lorentzen, J.; Björklund, G.; Stöggl, T.; Romann, M. Variation vs. specialization: The dose-time-effect of technical and physiological variety in the development of elite swimmers. BMC Res. Notes 2024, 17, 48. [Google Scholar] [CrossRef]
- Gonjo, T.; Olstad, B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 18, 69. [Google Scholar] [CrossRef]
- Barry, L.; Lyons, M.; McCreesh, K.; Powell, C.; Comyns, T. The design and evaluation of an integrated training load and injury/illness surveillance system in competitive swimming. Phys. Ther. Sport 2023, 60, 54–62. [Google Scholar] [CrossRef]
- López-Belmonte, Ó.; Ruiz-Navarro, J.J.; Gay, A.; Cuenca-Fernández, F.; Mujika, I.; Arellano, R. Analysis of pacing and kinematics in 3000 m freestyle in elite level swimmers. Sport Biomech. 2023, 1–17, advance online publication. [Google Scholar] [CrossRef]
- Mejias, J.E.; Bragada, J.A.; Costa, M.J.; Reis, V.M.; Garrido, N.D.; Barbosa, T.M. Young masters vs. elite swimmers: Comparison of performance, energetics, kinematics and efficiency. Int. SportMed J. 2014, 15, 165–177. [Google Scholar]
- Costa, M.J.; Bragada, J.A.; Mejias, J.E.; Louro, H.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Effects of swim training on energetics and performance. Int. J. Sports Med. 2013, 34, 507–513. [Google Scholar] [CrossRef]
- Mujika, I.; Pyne, D.B.; Wu, P.P.; Ng, K.; Crowley, E.; Powell, C. Next-Generation models for predicting winning times in elite swimming events: Updated predictions for the Paris 2024 Olympic Games. Int. J. Sports Physiol. Perfor. 2023, 18, 1269–1274. [Google Scholar] [CrossRef]
- Mallett, A.; Bellinger, B.; Derave, W.; Osborne, M.; Minahan, C. The age, height, and body mass of Olympic swimmers: A 50-year review and update. Int. J. Sports Sci. Coach. 2020, 16, 210–233. [Google Scholar] [CrossRef]
- Aitken, T. Statistical analysis of top performers in sports with emphasis on the relevance of outliers. Sports Eng. 2004, 7, 75–88. [Google Scholar] [CrossRef]
Decades | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1920–1929 | 1930–1939 | 1940–1949 | 1950–1959 | 1960–1969 | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2009 | 2010–2019 | |
Males | ||||||||||
50 m | -- | -- | -- | -- | -- | 3 | 15 | 2 | 7 | -- |
100 m | 3 | 3 | 3 | 4 | 7 | 9 | 5 | 1 | 8 | -- |
200 m | 4 | 1 | 2 | 9 | 17 | 9 | 8 | 3 | 8 | -- |
400 m | 5 | 3 | 4 | 10 | 13 | 14 | 7 | 4 | 5 | -- |
800 m | 6 | 7 | 5 | 5 | 6 | 13 | 3 | 3 | 4 | -- |
1500 m | 6 | -- | 2 | 4 | 9 | 11 | 3 | 4 | 1 | 2 |
Females | ||||||||||
50 m | -- | -- | -- | -- | -- | 2 | 13 | 2 | 8 | 1 |
100 m | 7 | 6 | 10 | 5 | 13 | 3 | 2 | 11 | 2 | -- |
200 m | 3 | 6 | -- | 5 | 7 | 14 | 2 | 1 | 8 | -- |
400 m | 7 | 9 | 2 | 2 | 13 | 12 | 2 | -- | 6 | 3 |
800 m | -- | 4 | 1 | 6 | 9 | 19 | 4 | -- | 1 | 5 |
1500 m | 4 | 3 | 2 | 1 | 10 | 11 | 2 | -- | 1 | 6 |
Decades | One-Way ANOVA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1920–1929 | 1930–1939 | 1940–1949 | 1950–1959 | 1960–1969 | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2009 | 2010–2019 | F | p | η2 | |
Males | |||||||||||||
50 m | -- | -- | -- | -- | -- | 23.77 ± 0.08 | 22.56 ± 0.43 | 21.90 ± 0.12 | 21.32 ± 0.36 | -- | 34.44 | <0.01 | 0.82 |
100 m | 58.80 ± 1.51 | 56.60 ± 0.20 | 55.70 ± 0.26 | 55.00 ± 0.37 | 53.03 ± 0.74 | 50.81 ± 0.78 | 48.94 ± 1.37 | 48.21 * | 47.44 ± 0.43 | -- | 147.71 | <0.01 | 0.97 |
200 m | 134.65 ± 4.90 | 127.20 * | 125.80 ± 0.57 | 123.12 ± 1.51 | 117.85 ± 2.35 | 111.65 ± 1.53 | 107.90 ± 0.85 | 106.34 ± 0.34 | 104.35 ± 1.36 | -- | 132.75 | <0.01 | 0.95 |
400 m | 300.08 ± 8.86 | 284.03 ± 4.63 | 275.15 ± 2.38 | 265.24 ± 4.88 | 250.42 ± 3.15 | 236.12 ± 4.52 | 228.82 ± 1.63 | 224.28 ± 1.96 | 220.45 ± 0.54 | -- | 235.80 | <0.01 | 0.97 |
800 m | 642.03 ± 15.17 | 610.66 ± 9.10 | 583.54 ± 5.77 | 555.64 ± 11.06 | 521.80 ± 8.67 | 492.53 ± 8.99 | 471.90 ± 1.13 | 466.82 ± 0.94 | 457.88 ± 4.05 | -- | 287.54 | <0.01 | 0.98 |
1500 m | 1233.32 ± 56.56 | -- | 1107.35 ± 11.81 | 1071.75 ± 16.26 | 1001.54 ± 24.60 | 930.24 ± 18.96 | 896.46 ± 1.76 | 885.98 ± 4.08 | 874.56 * | 872.58 ± 2.21 | 90.23 | <0.01 | 0.96 |
Females | |||||||||||||
50 m | -- | -- | -- | -- | -- | 26.87 ± 0.18 | 25.67 ± 0.44 | 24.65 ± 0.20 | 24.16 ± 0.28 | 23.67 * | 35.76 | <0.01 | 0.87 |
100 m | 71.74 ± 2.01 | 65.90 ± 1.27 | 62.67 ± 1.16 | 59.70 ± 0.51 | 57.14 ± 1.17 | 54.83 ± 0.13 | 54.25 ± 0.83 | 53.10 ± 0.62 | 51.89 ± 0.25 | -- | 204.61 | <0.01 | 0.97 |
200 m | 164.47 ± 3.56 | 147.07 ± 4.41 | -- | 138.18 ± 2.24 | 129.24 ± 1.63 | 121.84 ± 2.92 | 117.65 ± 0.14 | 116.78 * | 115.00 ± 1.28 | -- | 170.99 | <0.01 | 0.97 |
400 m | 354.25 ± 18.72 | 315.71 ± 8.55 | 302.75 ± 3.75 | 289.00 ± 2.55 | 276.64 ± 6.65 | 255.01 ± 6.13 | 244.65 ± 1.13 | -- | 241.15 ± 1.37 | 237.90 ± 1.27 | 126.42 | <0.01 | 0.96 |
800 m | -- | 702.23 ± 27.89 | 652.50 * | 621.73 ± 12.36 | 573.03 ± 16.29 | 525.90 ± 12.09 | 498.83 ± 2.78 | -- | 494.10 * | 488.57 ± 3.35 | 133.26 | <0.01 | 0.96 |
1500 m | 1454.75 ± 35.87 | 1353.20 ± 45.85 | 1263.55 ± 9.26 | 1246.50 * | 1001.28 ± 42.24 | 997.49 ± 20.14 | 956.42 ± 6.10 | -- | 942.54 * | 928.80 ± 5.85 | 153.53 | <0.01 | 0.98 |
Decades | One-Way ANOVA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1920–1929 | 1930–1939 | 1940–1949 | 1950–1959 | 1960–1969 | 1970–1979 | 1980–1989 | 1990–1999 | 2000–2009 | 2010–2019 | F | p | η2 | |
Males | |||||||||||||
50 m | -- | -- | -- | -- | -- | 23.44 ± 1.88 | 21.84 ± 2.42 | 25.46 ± 0.00 | 24.58 ± 2.69 | -- | 2.92 | 0.05 | 0.28 |
100 m | 22.61 ± 6.45 | 21.20 ± 0.97 | 20.18 ± 1.41 | 22.26 ± 2.64 | 21.06 ± 1.80 | 21.05 ± 1.62 | 21.07 ± 1.37 | 22.59 * | 23.64 ± 1.17 | -- | 1.30 | 0.28 | -- |
200 m | 21.23 ± 2.24 | 20.52 * | 18.72 ± 1.44 | 19.26 ± 2.55 | 20.08 ± 2.21 | 19.58 ± 1.99 | 20.48 ± 1.38 | 17.53 ± 1.16 | 20.85 ± 2.44 | -- | 1.16 | 0.34 | -- |
400 m | 20.97 ± 2.67 | 19.98 ± 1.76 | 19.36 ± 1.89 | 18.76 ± 2.03 | 19.24 ± 2.12 | 18.01 ± 0.94 | 20.78 ± 1.34 | 19.02 ± 1.76 | 19.41 ± 2.17 | -- | 2.15 | 0.05 | 0.24 |
800 m | 20.18 ± 3.66 | 19.70 ± 2.35 | 20.14 ± 1.65 | 17.57 ± 2.37 | 21.11 ± 1.94 | 16.91 ± 1.07 | 23.58 ± 2.24 | 19.19 ± 1.61 | 21.25 ± 3.23 | -- | 4.75 | <0.01 | 0.47 |
1500 m | 22.53 ± 3.17 | -- | 20.91 ± 0.01 | 18.94 ± 2.63 | 20.45 ± 2.33 | 17.57 ± 2.69 | 21.49 ± 1.31 | 19.90 ± 1.27 | 21.22 * | 20.17 ± 0.72 | 2.52 | 0.03 | 0.38 |
Females | |||||||||||||
50 m | -- | -- | -- | -- | -- | 17.91 ± 1.64 | 17.02 ± 1.38 | 23.65 ± 4.38 | 25.94 ± 3.27 | 23.95 * | 19.27 | <0.01 | 0.79 |
100 m | 18.48 ± 1.01 | 16.78 ± 1.02 | 19.12 ± 1.20 | 22.48 ± 4.65 | 16.98 ± 3.38 | 20.87 ± 0.29 | 19.25 ± 0.34 | 23.93 ± 2.71 | 24.11 ± 0.25 | -- | 8.54 | <0.01 | 0.58 |
200 m | 18.52 ± 3.04 | 16.48 ± 1.14 | -- | 19.07 ± 1.28 | 17.41 ± 2.55 | 16.28 ± 1.39 | 17.23 ± 1.50 | 16.42 * | 20.75 ± 1.63 | -- | 5.87 | <0.01 | 0.52 |
400 m | 18.15 ± 1.45 | 17.22 ± 0.86 | 19.75 ± 0.01 | 17.98 ± 0.11 | 16.67 ± 1.05 | 16.54 ± 1.14 | 16.69 ± 0.54 | -- | 20.57 ± 1.13 | 18.07 ± 1.14 | 9.86 | <0.01 | 0.63 |
800 m | -- | 21.15 ± 3.82 | 20.67 * | 15.72 ± 2.56 | 15.79 ± 1.44 | 16.26 ± 1.49 | 17.11 ± 1.04 | -- | 19.49 * | 18.06 ± 1.22 | 5.22 | <0.01 | 0.47 |
1500 m | 18.52 ± 1.86 | 18.03 ± 0.45 | 20.18 ± 0.72 | 16.27 * | 15.47 ± 1.06 | 15.10 ± 1.20 | 16. 25 ± 0.45 | -- | 18.97 * | 18.16 ± 1.65 | 8.14 | <0.01 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.J.; Quinta-Nova, L.; Ferreira, S.; Costa, A.M.; Santos, C.C. Trend Forecasting in Swimming World Records and in the Age of World Record Holders. Appl. Sci. 2024, 14, 9492. https://doi.org/10.3390/app14209492
Costa MJ, Quinta-Nova L, Ferreira S, Costa AM, Santos CC. Trend Forecasting in Swimming World Records and in the Age of World Record Holders. Applied Sciences. 2024; 14(20):9492. https://doi.org/10.3390/app14209492
Chicago/Turabian StyleCosta, Mário J., Luis Quinta-Nova, Sandra Ferreira, Aldo M. Costa, and Catarina C. Santos. 2024. "Trend Forecasting in Swimming World Records and in the Age of World Record Holders" Applied Sciences 14, no. 20: 9492. https://doi.org/10.3390/app14209492
APA StyleCosta, M. J., Quinta-Nova, L., Ferreira, S., Costa, A. M., & Santos, C. C. (2024). Trend Forecasting in Swimming World Records and in the Age of World Record Holders. Applied Sciences, 14(20), 9492. https://doi.org/10.3390/app14209492