Scheduling Cluster Tools with Multi-Space Process Modules and a Multi-Finger-Arm Robot in Wafer Fabrication Subject to Wafer Residency Time Constraints
Abstract
:1. Introduction
2. The Processes and Scheduling Strategies
2.1. The Operation Processes
2.2. Robot Task Sequences
3. Scheduling Analysis
3.1. Temporal Properties Under OBS
3.2. Temporal Properties Under OHTS
3.3. Temporal Properties Under TBS
3.4. Temporal Properties Under THTS
3.5. Linear Programs for Solution
4. Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bader, M.E.; Hall, R.P.; Strasser, G. Integrated processing equipment. Solid State Technol. 1990, 33, 149–154. [Google Scholar]
- Burggraaf, P. Coping with the high cost of wafer fabs. Semicond. Int. 1995, 18, 45–50. [Google Scholar]
- Newboe, B. Cluster tools: A process solution. Semicond. Int. 1990, 13, 82–88. [Google Scholar]
- Singer, P. The driving forces in cluster tool development. Semicond. Int. 1995, 18, 113–118. [Google Scholar]
- McNab, T.K. Cluster tools, part 1: Emerging processes. Semicond. Int. 1990, 13, 58–63. [Google Scholar]
- Wu, N.Q.; Chu, C.B.; Chu, F.; Zhou, M.C. A Petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints. IEEE Trans. Semicond. Manuf. 2008, 21, 224–237. [Google Scholar] [CrossRef]
- Perkinson, T.L.; Gyurcsik, R.S.; MacLarty, P.K. Single-wafer cluster tool performance: An analysis of the effects of redundant chambers and revisitation sequences on throughput. IEEE Trans. Semicond. Manuf. 1996, 9, 384–400. [Google Scholar] [CrossRef]
- Rostami, S.; Hamidzadeh, B.; Camporese, D. An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints. IEEE Trans. Robot. Autom. 2001, 17, 609–618. [Google Scholar] [CrossRef]
- Lee, T.-E.; Park, S.-H. An extended event graph with negative places and tokens for time window constraints. IEEE Trans. Autom. Sci. Eng. 2005, 2, 319–332. [Google Scholar] [CrossRef]
- Lopez, M.-J.; Wood, S.-C. Systems of multiple cluster tools: Configuration, reliability, and performance. IEEE Trans. Semicond. Manuf. 2003, 16, 170–178. [Google Scholar] [CrossRef]
- Lee, T.-E.; Lee, H.-Y.; Shin, Y.-H. Workload balancing and scheduling of a single-armed cluster tool. In Proceedings of the 5th APIEMS Conference, Gold Coast, QLD, Australia, 12–15 December 2004; pp. 1–6. [Google Scholar]
- Venkatesh, S.; Davenport, R.; Foxhoven, P.; Nulman, J. A steady-state throughput analysis of cluster tools: Dual-blade versus single-blade robots. IEEE Trans. Semicond. Manuf. 1997, 10, 418–424. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Pan, C.; Zhou, Y.; Li, L. Scheduling dual-arm cluster tools with multiple wafer types and residency time constraints. IEEE/CAA J. Autom. Sin. 2020, 7, 776–789. [Google Scholar] [CrossRef]
- Yi, J.; Ding, S.; Song, D.; Zhang, M.T. Steady-state throughput and scheduling analysis of multi-cluster tools: A decomposition approach. IEEE Trans. Autom. Sci. Eng. 2008, 5, 321–336. [Google Scholar]
- Ding, S.; Yi, J.; Zhang, M.T. Multicluster tools scheduling: An integrated event graph and network model approach. IEEE Trans. Semicond. Manuf. 2006, 19, 339–351. [Google Scholar] [CrossRef]
- Perkinson, T.L.; McLarty, P.K.; Gyurcsik, R.S.; Cavin, R.K. Single-wafer cluster tool performance: An analysis of throughput. IEEE Trans. Semicond. Manuf. 1994, 7, 369–373. [Google Scholar] [CrossRef]
- Chan, W.K.V.; Yi, J.; Ding, S. Optimal scheduling of multicluster tools with constant robot moving times, part I: Two-cluster analysis. IEEE Trans. Autom. Sci. Eng. 2011, 8, 5–16. [Google Scholar] [CrossRef]
- Zuberek, W.M. Timed Petri nets in modeling and analysis of cluster tools. IEEE Trans. Robot. Autom. 2001, 17, 562–575. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, T.-E.; Lee, H.-Y.; Park, D.-B. Scheduling analysis of time-constrained dual-armed cluster tools. IEEE Trans. Semicond. Manuf. 2003, 16, 521–534. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.-J.; Lee, T.-E. Scheduling lot switching operations for cluster tool. IEEE Trans. Semicond. Manuf. 2013, 26, 592–601. [Google Scholar] [CrossRef]
- Wu, N.Q.; Zhou, M.C. A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis. IEEE Trans. Autom. Sci. Eng. 2010, 7, 303–315. [Google Scholar]
- Lim, Y.; Yu, T.-S.; Lee, T.-E. A new class of sequences without interferences for cluster tools with tight wafer delay constraints. IEEE Trans. Autom. Sci. Eng. 2019, 16, 392–405. [Google Scholar] [CrossRef]
- Ko, S.-G.; Yu, T.-S.; Lee, T.-E. Wafer delay analysis and workload balancing of parallel chambers for dual-armed cluster tools with multiple wafer types. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1516–1526. [Google Scholar] [CrossRef]
- Lim, Y.; Yu, T.-S.; Lee, T.-E. Adaptive scheduling of cluster tools with wafer delay constraints and process time variation. IEEE Trans. Autom. Sci. Eng. 2020, 17, 375–388. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Wang, G.H.; Hou, Y.; Qiao, Y.; Wu, N.Q.; Zhou, M.C. Optimally scheduling dual-arm multi-cluster tools to process two wafer types. IEEE Trans. Robot. Autom. 2022, 7, 5920–5927. [Google Scholar] [CrossRef]
- Yang, F.J.; Wu, N.Q.; Qiao, Y.; Zhou, M.C.; Li, Z.W. Scheduling of single-arm cluster tools for an atomic layer deposition process with residency time constraints. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 502–516. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.Q.; Zhou, M.C. Schedulability and scheduling analysis of dual-arm cluster tools with wafer revisiting and residency time constraints based on a novel schedule. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 472–484. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.Q.; Zhou, M.C. Petri net modeling and wafer sojourn time analysis of single-arm cluster tools with residency time constraints and activity time variation. IEEE Trans. Semicond. Manuf. 2012, 25, 432–446. [Google Scholar] [CrossRef]
- Wu, N.Q.; Zhou, M.C. Modeling, analysis and control of dual-arm cluster tools with residency time constraint and activity time variation based on Petri nets. IEEE Trans. Autom. Sci. Eng. 2012, 9, 446–454. [Google Scholar]
- Yu, T.-S.; Kim, H.-J.; Lee, T.-E. Scheduling single-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng. 2018, 15, 705–716. [Google Scholar] [CrossRef]
- Yu, T.-S.; Lee, T.-E. Scheduling dual-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng. 2019, 16, 218–228. [Google Scholar] [CrossRef]
- Yu, T.-S.; Lee, T.-E. Wafer delay analysis and control of dual-armed cluster tools with chamber cleaning operations. Int. J. Prod. Res. 2019, 58, 434–447. [Google Scholar] [CrossRef]
- Pires, F.; Cachada, A.; Barbosa, J.; Moreira, A.P.; Leitao, P. Digital twin in Industry 4.0 : Technologies, applications and challenges. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; pp. 721–726. [Google Scholar]
- Borys, S.; Kaczmarek, W.; Laskowski, D. Selection and optimization of the parameters of the robotized packaging process of one type of product. Sensors 2020, 20, 5378. [Google Scholar] [CrossRef]
- Ullrich, M.; Thalappully, R.; Heieck, F.; Lüdemann-Ravit, B. Virtual commissioning of linked cells using digital models in an industrial metaverse. Automation 2024, 5, 1–12. [Google Scholar] [CrossRef]
- Kaczmarek, W.; Lotys, B.; Borys, S.; Laskowski, D.; Lubkowski, P. Controlling an industrial robot using a graphic tablet in offline and online mode. Sensors 2021, 21, 2439. [Google Scholar] [CrossRef]
- Ugarte, M.; Etxeberria, L.; Unamuno, G.; Bellanco, J.L.; Ugalde, E. Implementation of digital twin-based virtual commissioning in machine tool manufacturing. Procedia Comput. Sci. 2022, 200, 527–536. [Google Scholar] [CrossRef]
- Mayer, E.; Raisch, J. Time-optimal scheduling for high throughput screening processes using cyclic discrete event models. Math. Comput. Simul. 2004, 66, 181–191. [Google Scholar] [CrossRef]
- Mayer, E.; Haus, U.-U.; Raisch, J.; Weismantel, R. Throughput-optimal sequences for cyclically operated plants. Discret. Event Dyn. Syst. 2008, 18, 355–383. [Google Scholar] [CrossRef]
- Wu, N.Q.; Qiao, Y.; Li, Z.W.; Al-Ahmari, A.; El-Tamimi, A.; Kaid, H. A novel control-theory-based approach to scheduling of high throughput screening system for enzymatic assay. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 7667–7678. [Google Scholar] [CrossRef]
Examples | Case 1 | Case 2 | Case 3 | ||||
---|---|---|---|---|---|---|---|
Example 1 WFP = (1, 1, 1) | Parameters | α1 = [50.0, 100.0], α2 = 60.0, α3 = 80.0; δ1 = 30.0, δ2 = 40.0, δ3 = 28.0; β = 1.0, β0 = 2.0, μ = 1.0, υ = 2.0. | α1 = 124.0, α2 = [90.0, 140.0], α3 = 120.0; δ1 = 48.0, δ2 = 45.0, δ3 = 46.0; β = 2.0, β0 = 4.0, μ = 2.0, υ = 6.0. | α1 = 131.0, α2 = 135.0, α3 = [100.0, 160.0]; δ1 = 45.0, δ2 = 32.0, δ3 = 46.0; β = 1.0, β0 = 2.0, μ = 2.0, υ = 2.0. | |||
Cycle time | OBS | ψ1 = [97.0, 119.0] | ψ1 = [164.0, 176.0] | ψ1 = [159.0, 184.0] | |||
OHTS | ψ2 = [97.0, 114.0] | ψ2 = [156.0, 178.0] | ψ2 = [173.0, 180.0] | ||||
TBS | ψ3 = [106.0, 107.0] | ψ3 = 180.0 | ψ3 = [172.0, 177.0] | ||||
THTS | ψ4 = [106.0, 112.0] | ψ4 = [174.0, 178.0] | ψ4 = [179.0, 180.0] | ||||
Schedulable range | OBS | α1 = [50.0, 100.0] | α2 = [90.0, 140.0] | α3 = [100.0, 160.0] | |||
OHTS | α1 = [64.0, 100.0] | α2 = [90.0, 122.0] | α3 = [100.0, 156.0] | ||||
TBS | α1 = [68.0, 80.0] | α2 = [121.0, 126.0] | α3 = [116.0, 140.0] | ||||
THTS | α1 = [73.0, 90.0] | α2 = [105.0, 114.0] | α3 = [123.0, 143.0] | ||||
Example 2 WFP = (2, 1, 1) | Parameters | α1 = 300.0, α2 = 120.0, α3 = 130.0; δ1 = [30.0, 60.0], δ2 = 45.0, δ3 = 40.0; β = 1.0, β0 = 2.0, μ = 1.0, υ = 14.0. | α1 = 300.0, α2 = 120.0, α3 = 130.0; δ1 = [30.0, 60.0], δ2 = 45.0, δ3 = 40.0; β = 1.0, β0 = 2.0, μ = 1.0, υ = 4.0. | α1 = 310.0, α2 = 130.0, α3 = 140.0; δ1 = 42.0, δ2 = 45.0, δ3 = 42.0; β = 1.0, β0 = 2.0, μ = 1.0, υ = [2.0, 14.0]. | |||
Schedulable conditions | OBS | δ1 = 39.0 | δ1 = 9.0 | Cycle time | OBS | ψ1 = [164.5, 191.0] | |
OHTS | δ1 = 59.0 | δ1 = 13.0 | OHTS | ψ2 = [162.0, 176.0] | |||
TBS | δ1 = 36.0 | δ1 = 21.0 | TBS | ψ3 = [168.5, 173.0] | |||
THTS | δ1 = 51.0 | δ1 = 21.0 | THTS | ψ4 = [166.0, 177.0] | |||
Cycle time | OBS | ψ1 = 181.0 | ψ1 = 161.0 | Schedulable range | OBS | υ = [2.0, 14.0] | |
OHTS | ψ2 = 181.0 | ψ2 = 158.0 | OHTS | υ = [2.0, 9.0] | |||
TBS | ψ3 = 172.0 | ψ3 = 164.5 | TBS | υ = [2.0, 13.0] | |||
THTS | ψ4 = 177.0 | ψ4 = 162 | THTS | υ = [2.0, 9.0] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Wu, N.; Qiao, Y.; Zhang, S.; Li, T. Scheduling Cluster Tools with Multi-Space Process Modules and a Multi-Finger-Arm Robot in Wafer Fabrication Subject to Wafer Residency Time Constraints. Appl. Sci. 2024, 14, 9490. https://doi.org/10.3390/app14209490
Gu L, Wu N, Qiao Y, Zhang S, Li T. Scheduling Cluster Tools with Multi-Space Process Modules and a Multi-Finger-Arm Robot in Wafer Fabrication Subject to Wafer Residency Time Constraints. Applied Sciences. 2024; 14(20):9490. https://doi.org/10.3390/app14209490
Chicago/Turabian StyleGu, Lei, Naiqi Wu, Yan Qiao, Siwei Zhang, and Tan Li. 2024. "Scheduling Cluster Tools with Multi-Space Process Modules and a Multi-Finger-Arm Robot in Wafer Fabrication Subject to Wafer Residency Time Constraints" Applied Sciences 14, no. 20: 9490. https://doi.org/10.3390/app14209490
APA StyleGu, L., Wu, N., Qiao, Y., Zhang, S., & Li, T. (2024). Scheduling Cluster Tools with Multi-Space Process Modules and a Multi-Finger-Arm Robot in Wafer Fabrication Subject to Wafer Residency Time Constraints. Applied Sciences, 14(20), 9490. https://doi.org/10.3390/app14209490