Copolymerization of Ethylene with Alpha-Olefins over Supported Titanium–Magnesium Catalysts Containing Titanium Compounds in Different Oxidation and Coordination States
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Oxidation State of Titanium in the Active Component of Ti-Mg Catalysts of Different Composition According to ESR Data
3.2. Copolymerization of Ethylene with α-Olefins over Ti-Mg Catalysts Containing Titanium Compounds in Different Oxidation States and Different Coordination Environments
3.2.1. Copolymerization of Ethylene with 1-Hexene
3.2.2. Copolymerization of Ethylene with Propylene
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nowlin, T.E. Business and technology of the global polyethylene industry. In An In-Depth Look at the History, Technology, Catalysts, and Modern Commercial Manufacture of Polyethylene and Its Products; WILEY Scrivener Publishing: Beverly, MA, USA, 2014; p. 403. ISBN 978-1-118-94598-8. [Google Scholar]
- Sauter, D.; Taoufik, M.; Boisson, C. Polyolefins, a success story. Polymers 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Plastics Europe: Plastics—The Facts 2020. Available online: https://plasticseurope.org/de/wp-content/uploads/sites/3/2021/11/Plastics_the_facts-WEB-2020 version Jun21_final.pdf (accessed on 27 June 2022).
- Bialek, N.; Czaja, K. The effect of the comonomer on the copolymerization of ethylene with long chain α-olefins using Ziegler–Natta catalysts supported on MgCl2 (THF)2. Polymer 2000, 41, 7899. [Google Scholar] [CrossRef]
- Alizadeh, A.; Richardson, L.; Xu, J.; McCartney, S.; Marand, H.; Cheung, Y.W.; Chum, S. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules 1999, 32, 622. [Google Scholar] [CrossRef]
- Soares, J.B.P. An overview of important microstructural distributions for polyolefin analysis. Macromol. Symp. 2007, 257, 1–12. [Google Scholar] [CrossRef]
- Wahner, U.M.; Tincul, I.; Joubert, D.J.; Sadiku, E.R.; Forlini, F.; Losio, S.; Tritto, I.; Sacchi, M.C. 13C NMR study of copolymers of propene with higher 1-olefins with new microstructures by ansa-zirconocene catalysts. Macromol. Chem. Phys. 2003, 204, 1738–1746. [Google Scholar]
- Matsko, M.A.; Echevskaya, L.G.; Zakharov, V.A.; Nikolaeva, M.I.; Mikenas, T.B.; Vanina, M.P. Study of multi-site nature of supported Ziegler-Natta catalysts in ethylene-1-hexene copolymerization. Macromol. Symp. 2009, 282, 157. [Google Scholar] [CrossRef]
- Cho, H.S.; Chung, J.S.J.; Han, J.H.; Ko, Y.G.; Lee, W.Y. Polymerization of ethylene and ethylene/1-hexene over Ziegler–Natta/metallocene hybrid catalysts supported on MgCl2 prepared by a recrystallization method. J. Appl. Polym. Sci. 1998, 70, 1707–1715. [Google Scholar] [CrossRef]
- Aigner, P.; Averina, E.; Garoff, T.; Paulik, C. Effects of alterations to Ziegler–Natta catalysts on kinetics and comonomer (1-butene) incorporation. Macromol. React. Eng. 2017, 11, 1700009. [Google Scholar] [CrossRef]
- Cöpperl, L.; Pernusch, D.; Schwarz, J.; Paulik, C. Impact of polymerization process parametrs on improved comonomer incorporation behavior in Ziegler-Natta catalysis. Macromol. React. Eng. 2022, 16, 2100042. [Google Scholar] [CrossRef]
- Masoori, M.; Rashedi, R.; Sepahi, A.; Jandaghian, M.H.; Nikzinat, E.; Houshmandmoayed, S. Structure–Performance Relationship(SPR) of Ziegler Natta catalysts (TiCl4/MgCl2 based) in ethylene/1 butene and ethylene/1 hexene copolymerization. J. Polym. Res. 2022, 29, 317. [Google Scholar] [CrossRef]
- Alghyamah, A.A.; Soares, J.B.P. Simultaneous deconvolution of the bivariate distribution of molecular weight and chemical composition of polyolefins made with Ziegler-Natta catalysts. Macromol. Rapid. Commun. 2009, 30, 384–393. [Google Scholar] [CrossRef]
- Zucchini, U.; Cecchin, G. Control of molecular-weight distribution in polyolefins synthesized with Ziegler-Natta catalytic systems. Adv. Pol. Sci. 1983, 51, 109. [Google Scholar]
- Mori, H.; Hasebe, K.; Terano, M. Variation in oxidation state of titanium species on MgCl2-supported Ziegler catalyst and its correlation with kinetic behavior for propylene polymerization. Polymer 1999, 40, 1389–1394. [Google Scholar] [CrossRef]
- Mikenas, T.B.; Tregubov, A.A.; Zakharov, V.A.; Echevskaya, L.G.; Matsko, M.A. Titanium-magnesium catalysts for olefin polymerization- effect of titanium oxidation state on catalyst performance. Polymery 2008, 53, 353–357. [Google Scholar] [CrossRef][Green Version]
- Zakharov, V.A.; Echevskaya, L.G.; Mikenas, T.B.; Matsko, M.A.; Tregubov, A.A.; Vanina, M.P.; Nikolaeva, M.I. Supported Ziegler-Natta catalysts for ethylene slurry polymerization and control of molecular weight distribution of polyethylene. Chin. J. Polym. Sci. 2008, 26, 553–559. [Google Scholar] [CrossRef]
- Tregubov, A.A.; Zakharov, V.A.; Mikenas, T.B. Supported titanium-magnesium catalysts for ethylene polymerization: A comparative study of catalysts containing isolated and clustered titanium ions in different oxidation states. J. Polym. Sci. Part A 2009, 47, 6362–6372. [Google Scholar] [CrossRef]
- Senso, N.; Praserthdam, P.; Jongsomjit, B.; Taniike, T.; Terano, M. Effect of Ti oxidation on ethylene, 1-hexene comomomer polymerization by MgCl2-supported Ziegler-Natta catalysts. Polym. Bull. 2011, 67, 1979–1989. [Google Scholar] [CrossRef]
- Fisher, E.O.; Hafner, W.Z. Di-benzol-chrom über aromatenkomplexe von metallen I. Naturforsch 1955, 10b, 665–668. [Google Scholar] [CrossRef][Green Version]
- Albizzati, E.; Giannini, U.; Balbontin, G.; Camurati, I.; Chadwick, J.C.; Dall’Occo, T.; Dubitsky, Y.; Galimberti, M.; Morini, G.; Maldotti, A. Propylene polymerization with catalysts containing divalent titanium. J. Polym. Sci. Part A 1997, 35, 2645–2652. [Google Scholar] [CrossRef]
- Fowles, G.W.A.; Hoodless, R.A. The reaction of titanium halides with tertiary amines. J. Chem. Soc. 1963, 1, 33. [Google Scholar] [CrossRef]
- Makino, K.; Tsuda, K.; Takaki, M. Preparation of a soluble TiCl3 catalyst for copolymerization of ethylene with propene—A new reduction method of TiCl4 with hydrogen. Macromol. Chem. Rapid. Commun. 1990, 11, 223–227. [Google Scholar] [CrossRef]
- Mikenas, T.B.; Nikitin, V.E.; Zakharov, V.A.; Mozgunova, N.V. The Method of Preparation of the Catalyst and the Process of Polymerization of Ethylene Using This Catalyst. RF Patent 2320410C1, 27 March 2008. [Google Scholar]
- Randall, J.C. Methylene sequence distributions and number average sequence lengths in ethylene-propylene copolymers. Macromolecule 1978, 11, 33–36. [Google Scholar] [CrossRef]
- Echevskaya, L.G.; Zakharov, V.A.; Golovin, A.V.; Mikenas, T.B. Molecular structure of polyethylene produced with supported vanadium-magnesium catalyst. Macromol. Chem. Phys. 1999, 200, 1434. [Google Scholar] [CrossRef]
- Werber, F.X.; Benning, C.J.; Wszolek, W.R.; Ashby, G.E. Crystalline titanium dichloride—An active catalyst in ethylene polymerization. I. Catalyst activation. J. Polym. Sci. Part A 1968, 6, 743–754. [Google Scholar] [CrossRef]
- Bukatov, G.D.; Zakharov, V.A.; Ermakov, Y.I. On the nature of active centers during polymerization of ethylene on titanium dichloride. Kinetika I Kataliz 1971, 12, 743. [Google Scholar]
- Gul’tseva, N.M.; Ushakova, T.M.; Aladyshev, A.M.; Raspopov, L.N.; Meshkova, I.N. Influence of the nature of monomers on the activity of supported titanium catalysts in the α-olefin polymerization. Polym. Bull. 1992, 9, 639–646. [Google Scholar] [CrossRef]
- Jaber, A.; Fink, G. Active centers concentration in ethylene homo- and copolymerization with 1-hexene using the highly active TiCl4/MgH2-AlEt3 catalyst system. J. Mol. Catal. A Chem. 1995, 97, 135–141. [Google Scholar] [CrossRef]
- Sukulova, V.V.; Barabanov, A.A.; Matsko, M.A.; Zakharov, V.A.; Mikenas, T.B. Kinetic features of ethylene copolymerization with 1-hexene over titanium-magnesium Ziegler-Natta catalysts: Effect of comonomer on the number of active centers and the propagation rate constant. J. Catal. 2019, 369, 276–282. [Google Scholar] [CrossRef]
- Garoff, T.; Mannonen, L.; Vaananen, M.; Eriksson, V.; Kallio, K.; Waldvogel, P. Chemical composition distribution study in ethylene/1-hexene copolymerization to produce LLDPE material using MgCl2- TiCl4-based Ziegler-Natta catalysts. J. Appl. Polym. Sci. 2010, 115, 826–836. [Google Scholar] [CrossRef]
- Nikolaeva, M.I.; Matsko, M.A.; Mikenas, T.B.; Echevskaya, L.G.; Zakharov, V.A. Copolymerization of ethylene with a-olefins over supported titanium–magnesium catalysts. II. Comonomer as a chain transfer agent. J. Appl. Polym. Sci. 2012, 125, 2042–2049. [Google Scholar] [CrossRef]
Exp. No. | Catalyst | [Ti], wt.% | Catalyst Composition | Ti(IV), wt.% | Ti (III), wt.% | Ti(II), wt.% | ||
---|---|---|---|---|---|---|---|---|
Isol. | Ass. | Isol. | Ass. | |||||
1 | TMC-1 | 1.5 | [η6-BenzeneTiCl2·2AlCl3]/MgCl2 | - | - | - | 100 | - |
2 | TMC-1-2 | 1.5 | [η6-BenzeneTiCl2·2AlCl3]/MgCl2/C6F5Cl | - | 100 | - | - | - |
2-1 | [η6-BenzeneTiCl2·2AlCl3]/MgCl2/C6F5Cl/TIBA | - | 100 | - | - | - | ||
3 | TMC-2 | 1.5 | TiCl3/MgCl2 | - | 35 | 65 | - | - |
3-1 | TiCl3/MgCl2/TiBA | - | 35 | 55–60 | - | 5–10 | ||
4 | TMC-3 | 1.2 | TiCl4/MgCl2 | 100 | - | - | - | - |
4-1 | TiCl4/MgCl2/TiBA | 15 | 7 | 63 | 5 | 10 |
Catalyst | Exp. No. | [C6]/[C2](molar) | τp 1, min | Rp 2, kg/ (gcat·× h) | T1, °C | X1, % | MI(5), g/ 10 min | Mn kg/mol | Mw kg/mol | Mw/ Mn | CH3/ 1000 C | Bu/ 1000 C | mol.% 1-hexene | r1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TMC-1 (1.5 wt.% Ti) | 1 | 0 | 60 | 2.42 | 139.5 | 63 | 0.26 | 53 | 270 | 5.1 | - | 0 | 0 | 49 |
2 | 1.1 | 14 | 9.4 | 127.5 | 31 | 3.4 | 24 | 115 | 4.8 | 14.0 | 12.8 | 2.6 | ||
3 | 2.3 | 12 | 12.2 | 127.3 | 35 | 7.1 | 22 | 100 | 4.5 | 21.6 | 20.3 | 4.1 | ||
TMC-1-2 (1.5 wt.% Ti) | 4 | 0 | 60 | 2.2 | - | - | 0.2 | 55 | 285 | 5.2 | - | 0 | 0 | 68 |
5 | 0.94 | 13 | 11.2 | 127.9 | 42 | 0.8 | 46 | 190 | 4.1 | 7.4 | 6.8 | 1.4 | ||
6 | 2.3 | 18 | 9.6 | 128.0 | 30 | 5.5 | 22 | 115 | 5.2 | 18.0 | 16.7 | 3.34 | ||
TMC-2 (1.5 wt.% Ti) | 7 | 0 | 60 | 1.4 | 139.8 | 66 | 0.13 | 66 | 300 | 4.5 | - | 0 | 0 | 99 |
9 | 0.94 | 15 | 6.0 | 128.5 | 41 | 0.67 | 54 | 230 | 4.3 | 7.3 | 6.8 | 1.4 | ||
10 | 4.5 | 19 | 5.6 | 126.8 | 26 | 1.82 | 23 | 97 | 4.2 | 22.6 | 21.4 | 4.3 | ||
TMC-3 (1.2 wt.% Ti) | 11 | 0 | 60 | 3.0 | 139.7 | 63 | 0.12 | 73 | 290 | 4.0 | - | 0 | 0 | 130 |
12 | 0.94 | 17 | 8.4 | 128.1 | 47 | 1.1 | 39 | 170 | 4.4 | 7.1 | 6.4 | 1.3 | ||
13 | 2.3 | 22 | 6.6 | 127.6 | 36 | 1.7 | 40 | 150 | 3.8 | 11.9 | 11.2 | 2.2 | ||
14 | 5.2 | 19 | 8.6 | 126.1 | 36 | 1.8 | 38 | 141 | 3.7 | 20.0 | 19.2 | 3.8 |
Sample | Content of Fraction, wt.% | Mn kg/mol | Mw/ Mn | (∑CH3)/ 1000 C | Bu/ 1000 C | (hexene)pol., mol.% |
---|---|---|---|---|---|---|
Initial copolymer 1 | - | 22 | 4.5 | 21.6 | 20.3 | 4.1 |
F1 | 25.3 | 8 | 4.0 | - | 26.7 5 | 5.3 |
F2 | 18.5 | 19 | 1.7 | 24.8 | 23.3 | 4.7 |
F3 | 19.2 | 38 | 1.6 | 17.7 | 17.0 | 3.4 |
F4 | 22.0 | 74 | 1.6 | 13.3 | 12.9 | 2.6 |
F5 | 15.0 | 180 | 1.9 | 10.0 | 9.84 | 2.0 |
F1/F5 | 2.65 | |||||
Initial copolymer 2 | - | 22 | 5.2 | 18.0 | 16.7 | 3.3 |
F1 | 19.7 | 8 | 3.0 | 29.6 | 27.3 5 | 5.5 |
F2 | 18.6 | 20 | 1.6 | 20.7 | 19.3 | 3.9 |
F3 | 20.0 | 41 | 1.4 | 17.7 | 17.0 | 3.4 |
F4 | 24.4 | 77 | 1.5 | 12.5 | 12.0 | 2.4 |
F5 | 17.2 | 190 | 2.0 | 9.1 | 9.0 | 1.8 |
F1/F5 | 3.1 | |||||
Initial copolymer 3 | - | 23 | 4.2 | 22.6 | 21.4 | 4.3 |
F1 | 27.1 | 11 | 3.6 | - | 34.0 5 | 6.8 |
F2 | 18.8 | 23 | 1.6 | 19.6 | 18.4 | 3.7 |
F3 | 22.2 | 49 | 1.6 | 14.4 | 13.8 | 2.8 |
F4 | 20.8 | 98 | 1.7 | 10.3 | 10.0 | 2.0 |
F5 | 11.1 | 210 | 1.8 | 8.2 | 8.0 | 1.6 |
F1/F5 | 4.25 | |||||
Initial copolymer 4 | - | 38 | 3.7 | 20.0 | 19.2 | 3.84 |
F1 | 23.1 | 13 | 4.1 | - | 32.0 5 | 6.4 |
F2 | 40.3 | 44 | 2.2 | 17.7 | 17.1 | 3.7 |
F3 | 24.3 | 100 | 1.9 | 11.1 | 11.1 | 2.3 |
F4 | 10.7 | 187 | 1.9 | 7.0 | 6.85 | 1.37 |
F5 | 1.6 | 320 | 1.9 | - | - | - |
F1/F4 | 4.7 |
Exp. No. | Catalyst | Yield 1, kg EPC/(g cat × h) | Mw kg/mol | Mw/ Mn | (C3H6)pol., mol.% |
---|---|---|---|---|---|
1 | TMC-1 | 2.4 | 170 | 11.3 | 42 |
2 | TMC-1-2 | 2.6 | 210 | 11.6 | 32 |
3 | TMC-3 | 1.7 | 190 | 8.3 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikenas, T.B.; Zakharov, V.A.; Guan, P.; Matsko, M.A. Copolymerization of Ethylene with Alpha-Olefins over Supported Titanium–Magnesium Catalysts Containing Titanium Compounds in Different Oxidation and Coordination States. Appl. Sci. 2023, 13, 5030. https://doi.org/10.3390/app13085030
Mikenas TB, Zakharov VA, Guan P, Matsko MA. Copolymerization of Ethylene with Alpha-Olefins over Supported Titanium–Magnesium Catalysts Containing Titanium Compounds in Different Oxidation and Coordination States. Applied Sciences. 2023; 13(8):5030. https://doi.org/10.3390/app13085030
Chicago/Turabian StyleMikenas, Tatiana B., Vladimir A. Zakharov, Peng Guan, and Mikhail A. Matsko. 2023. "Copolymerization of Ethylene with Alpha-Olefins over Supported Titanium–Magnesium Catalysts Containing Titanium Compounds in Different Oxidation and Coordination States" Applied Sciences 13, no. 8: 5030. https://doi.org/10.3390/app13085030
APA StyleMikenas, T. B., Zakharov, V. A., Guan, P., & Matsko, M. A. (2023). Copolymerization of Ethylene with Alpha-Olefins over Supported Titanium–Magnesium Catalysts Containing Titanium Compounds in Different Oxidation and Coordination States. Applied Sciences, 13(8), 5030. https://doi.org/10.3390/app13085030