Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunez-Briones, A.G.; Benavides, R.; Bolaina-Lorenzo, E.D.; Martínez-Pardo, M.E.; Kotzian-Pereira-Benavides, C.; Mendoza-Mendoza, E.; Bentacourt-Galindo, R.; Garcia-Cerda, L.A. Nontoxic flexible PVC nanocomposites with Ta2O5 and Bi2O3 nanoparticles for shielding diagnostic X-rays. Radiat. Phys. Chem. 2023, 202, 110512. [Google Scholar] [CrossRef]
- Intom, S.; Kalkornsurapranee, E.; Johns, J.; Kaewjaeng, S.; Kothan, S.; Hongtong, W.; Kaewkhao, J. Mechanical and radiation shielding properties of flexible material based on natural rubber/Bi2O3 composites. Radiat. Phys. Chem 2020, 172, 108772. [Google Scholar] [CrossRef]
- Adliene, D.; Gilys, L.; Griskonis, E. Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods B 2020, 4671, 21–26. [Google Scholar] [CrossRef]
- Sayyed, M.I.; El-Mesady, I.A.; Abouhaswa, A.S.; Askin, A.; Rammah, Y.S. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 2019, 1197, 656–665. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Chanthima, N.; Thongdang, J.; Reungsri, S.; Kothan, S.; Kaewkhao, J. Synthesis and radiation properties of Li2O-BaO-Bi2O3-P2O5 glasses. Mater. Today Proc. 2021, 43, 2544–2553. [Google Scholar] [CrossRef]
- Kumar, A.; Gaikwad, D.K.; Obaid, S.S.; Tekin, H.O.; Agar, O.; Sayyed, M.I. Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+x)PbO-10WO3-10Na2O−10MgO–(40-x)B2O3. Prog. Nucl. Energy 2020, 119, 103047. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Kothan, S.; Chaiphaksa, W.; Chanthima, N.; Rajaramakrishna, R.; Kim, H.J.; Kaewkhao, J. High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 2019, 160, 41–47. [Google Scholar] [CrossRef]
- Azman, N.Z.N.; Siddiqui, S.A.; Low, I.M. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays. Mater. Sci. Eng. C 2013, 33, 4952–4957. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Sayyed, M.I. Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 2021, 127, 190. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and characterization of tungsten/epoxy composites for c-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 356–357, 88–93. [Google Scholar] [CrossRef]
- Li, R.; Gu, Y.; Zhang, G.; Yang, Z.; Li, M.; Zhang, Z. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Compos. Sci. Technol. 2017, 143, 67–74. [Google Scholar] [CrossRef]
- Nagaraj, N.; Manjunatha, H.C.; Vidya, Y.S.; Seenappa, L.; Sridhar, K.N.; Damodara Gupta, P.S. Investigations on Lanthanide polymers for radiation shielding purpose. Radiat. Phys. Chem. 2022, 199, 110310. [Google Scholar] [CrossRef]
- Vignesh, S.; Winowlin Jappes, J.T.; Nagaveena, S.; Krishna Sharma, R.; Adam Khan, M.; More, C.V. Preparation of novel in-situ layered B4C and PbO reinforced solution casted layered polymer composites (SCLPC) for augmenting the gamma irradiation shielding capability. Vacuum 2023, 207, 111583. [Google Scholar] [CrossRef]
- Aldhuhaibat, M.J.R.; Amana, M.S.; Jubier, N.J.; Salim, A.A. Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat. Phys. Chem. 2021, 179, 109183. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Faghihi, R.; Arjmand, M.; Sina, S.; Aman, A.M. Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding. Radiat. Phys. Chem. 2018, 146, 77–85. [Google Scholar] [CrossRef]
- Canel, A.; Korkut, H.; Korkut, T. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiat. Phys. Chem. 2019, 158, 13–16. [Google Scholar] [CrossRef]
- Zali, V.S.; Jahanbakhsh, O.; Ahadzadeh, I. Preparation and evaluation of gamma shielding properties of silicon-based composites doped with WO3 micro- and nanoparticles. Radiat. Phys. Chem. 2022, 197, 110150. [Google Scholar] [CrossRef]
- Cao, D.; Yang, G.; Bourham, M.; Moneghan, D. Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites. Nucl. Eng. Technol. 2020, 52, 2613–2619. [Google Scholar] [CrossRef]
- Karabul, Y.; İçelli, O. The assessment of usage of epoxy based micro and nano-structured composites enriched with Bi2O3 and WO3 particles for radiation shielding. Results Phys. 2021, 26, 104423. [Google Scholar] [CrossRef]
- Muthamma, M.V.; Prabhu, S.; Bubbly, S.G.; Gudennavar, S.B. Micro and nano Bi2O3 filled epoxy composites: Thermal, mechanical and γ-ray attenuation properties. Appl. Radiat. Isot. 2021, 174, 109780. [Google Scholar] [CrossRef]
- X-5 Monte Carlo Team. MCNP—A General Monte Carlo N-Particle Transport Code, Version 5; La-Ur-03-1987. II; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003. [Google Scholar]
- Sayyed, M.I.; Zaid, M.H.M.; Effendy, N.; Matori, K.A.; Lacomme, E.; Mahmoud, K.A.; AlShammari, M.M. The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. J. Mater. Res. Technol. 2020, 9, 8429–84381. [Google Scholar] [CrossRef]
- Naseer, K.A.; Marimuthu, K.; Mahmoud, K.A.; Sayyed, M.I. The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: Physical, structural, optical, elastic, and radiation-shielding properties. Radiat. Phys. Chem. 2021, 188, 109617. [Google Scholar] [CrossRef]
- Hannachi, E.; Mahmoud, K.A.; Sayyed, M.I.; Slimani, Y. Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics. J. Phys. Chem. Solids 2022, 164, 110627. [Google Scholar] [CrossRef]
- Sakar, E.; Özgür, F.; Bünyamin, A.; Sayyed, M.I.; Murat, K. Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
Elemental Composition (wt.%) | |||
---|---|---|---|
Bi2O3 0% | Bi2O3 5% | Bi2O3 10% | |
H | 6.97 | 6.61 | 6.26 |
C | 44.01 | 41.77 | 39.54 |
O | 36.32 | 35.00 | 33.68 |
Na | 2.34 | 2.22 | 2.10 |
Cl | 8.48 | 8.05 | 7.62 |
K | 1.49 | 1.42 | 1.34 |
Co | 0.17 | 0.16 | 0.15 |
Bi | 0.00 | 4.55 | 9.10 |
Density (g/cm3) | 1.103 ± 0.033 | 1.159 ± 0.034 | 1.200 ± 0.036 |
Energy/keV | µm (cm2/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bi2O3 0% | Bi2O3 5% | Bi2O3 10% | |||||||
MCNP | Phy-X/PSD | EXP | MCNP | Phy-X/PSD | EXP | MCNP | Phy-X/PSD | EXP | |
15 | 3.155 | 3.152 | 8.278 | 8.282 | 13.396 | 13.400 | |||
20 | 1.452 | 1.451 | 5.442 | 5.458 | 9.426 | 9.459 | |||
30 | 0.565 | 0.564 | 1.972 | 1.973 | 3.378 | 3.379 | |||
59 | 0.226 | 0.226 | 0.236 | 0.462 | 0.464 | 0.486 | 0.698 | 0.702 | 0.729 |
74 | 0.194 | 0.195 | 0.323 | 0.325 | 0.451 | 0.456 | |||
97 | 0.171 | 0.171 | 0.443 | 0.446 | 0.715 | 0.719 | |||
103 | 0.167 | 0.167 | 0.401 | 0.402 | 0.635 | 0.636 | |||
122 | 0.157 | 0.157 | 0.308 | 0.308 | 0.459 | 0.459 | |||
302 | 0.113 | 0.114 | 0.127 | 0.127 | 0.140 | 0.141 | |||
356 | 0.106 | 0.107 | 0.115 | 0.115 | 0.124 | 0.124 | |||
511 | 0.092 | 0.092 | 0.096 | 0.095 | 0.095 | 0.099 | 0.098 | 0.098 | 0.103 |
604 | 0.085 | 0.086 | 0.087 | 0.087 | 0.089 | 0.089 | - | ||
661 | 0.082 | 0.082 | 0.085 | 0.083 | 0.084 | 0.087 | 0.085 | 0.085 | 0.089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, K.G.; Sayyed, M.I.; Almuqrin, A.H.; Arayro, J.; Maghrbi, Y. Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites. Appl. Sci. 2023, 13, 1757. https://doi.org/10.3390/app13031757
Mahmoud KG, Sayyed MI, Almuqrin AH, Arayro J, Maghrbi Y. Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites. Applied Sciences. 2023; 13(3):1757. https://doi.org/10.3390/app13031757
Chicago/Turabian StyleMahmoud, Karem G., M. I. Sayyed, Aljawhara H. Almuqrin, Jack Arayro, and Yasser Maghrbi. 2023. "Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites" Applied Sciences 13, no. 3: 1757. https://doi.org/10.3390/app13031757
APA StyleMahmoud, K. G., Sayyed, M. I., Almuqrin, A. H., Arayro, J., & Maghrbi, Y. (2023). Monte Carlo Investigation of Gamma Radiation Shielding Features for Bi2O3/Epoxy Composites. Applied Sciences, 13(3), 1757. https://doi.org/10.3390/app13031757