A Simple and Easily Implementable Model for the Prediction of Solar Irradiance for All-Sky Conditions: Model Development, Preliminary Evaluation and Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASHRAE. Handbook Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 1993. [Google Scholar]
- Bretz, S.; Akbari, H.; Rosenfeld, A. Practical issues for using solar-reflective materials to mitigate urban heat islands. Atmos. Environ. 1998, 32, 95–101. [Google Scholar] [CrossRef]
- Zdunkowski, W.G.; Panhans, W.; Welch, R.M.; Korb, G.J. A radiation scheme for circulation and climate models. Beitr. Phys. Atmosph. 1982, 55, 215–238. [Google Scholar]
- McCullough, E.C.; Porter, W.P. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 1971, 52, 1008–1015. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Giorgis, R.B., Jr.; Flocchini, R.G. A simple solar radiation model for computing direct and diffuse spectral fluxes. Sol. Energy 1981, 27, 323–329. [Google Scholar] [CrossRef]
- Atwater, M.A.; Ball, J.T. A surface solar radiation model for cloudy atmospheres. Mon. Weather Rev. 1981, 109, 878–888. [Google Scholar] [CrossRef]
- Nielsen, L.B.; Prahm, L.P.; Berkowicz, R.; Conradsen, K. Net incoming radiation estimated from hourly global radiation and/or cloud observations. J. Climatol. 1981, 1, 255–272. [Google Scholar] [CrossRef]
- Sherry, J.E.; Justus, C.G. A simple hourly clear-sky solar radiation model based on meteorological parameters. Sol. Energy 1983, 30, 425–431. [Google Scholar] [CrossRef]
- Sherry, J.E.; Justus, C.G. A simple hourly all-sky solar radiation model based on meteorological parameters. Sol. Energy 1984, 32, 195–204. [Google Scholar] [CrossRef]
- Turner, W.D.; Mujahid, A. The estimation of hourly global solar radiation using a cloud cover model developed at Blytheville, Arkansas. J. Clim. Appl. Meteorol. 1984, 23, 781–786. [Google Scholar] [CrossRef]
- Cerquetti, F.; Scuterini, C.; Murri, A. Correlations between total, diffuse and direct radiation and relative duration of sunshine. Sol. Energy 1984, 32, 557–559. [Google Scholar] [CrossRef]
- Rangarajan, S.; Swaminathan, M.S.; Mani, A. Computation of solar radiation from observations of cloud cover. Sol. Energy 1984, 32, 553–556. [Google Scholar] [CrossRef]
- Topcu, S.; Oney, S. The estimation of hourly total irradiation for cloudy sky in Istanbul. Renew. Energy 1994, 4, 223–226. [Google Scholar] [CrossRef]
- Gates, D.M. Biophysical Ecology; (Springer Advanced Texts in Life Sciences); Springer: New York, NY, USA, 1980; pp. 104–110. [Google Scholar]
- Lunardini, V.J. Heat Transfer in Cold Climates; Van Nostrand Reinhold Company: New York, NY, USA, 1981; pp. 212–214. [Google Scholar]
- Unsworth, M.H.; Monteith, J.L. Aerosol and solar radiation in Britain. Q. J. R. Meteorol. Soc. 1972, 99, 778–797. [Google Scholar] [CrossRef]
- Kondratyev, K.Y. Radiation in the Atmosphere; (International Geophysics Series); Academic Press: New York, NY, USA, 1969; pp. 166–167. [Google Scholar]
- List, R.J. Smithsonian Meteorological Tables, 6th ed.; Smithsonian Institute Press: Washington, DC, USA, 1971; p. 422. [Google Scholar]
- Aida, M.; Gotoh, K. Urban albedo as a function of the urban structure: A two-dimensional numerical simulation. Bound. Layer Meteorol. 1982, 23, 415–424. [Google Scholar] [CrossRef]
- Stafford Smith, D.M.; Noble, I.R.; Jones, G.K. A heat balance model for sheep and its use to predict shade-seeking behaviour in hot conditions. J. Appl. Ecol. 1985, 22, 753–774. [Google Scholar] [CrossRef]
- Alabiso, M.; Parrini, F.; Sidri, R. Estimation of hourly solar radiation on tilted planes from measured daily global radiation on the horizontal surface. In Proceedings of the 2nd International Conference ENVIROSOFT 88, Porto Carras, Greece, 27–29 September 1988. [Google Scholar]
- Galinski, A.E.; Thomson, D.J. Comparison of three schemes for predicting surface sensible heat flux. Bound. Layer Meteorol. 1995, 72, 345–370. [Google Scholar] [CrossRef]
- Aida, M. Urban albedo as a function of the urban structure: A model experiment. Bound. Layer Meteorol. 1982, 23, 405–413. [Google Scholar] [CrossRef]
- Arnfield, A.J. Numerical modelling of urban surface radiative parameters. In Papers in Climatology: The Cam Allen Memorial Volume; Discussion Paper Number 7; Davies, J.A., Ed.; Department of Geography, McMaster University: Hamilton, ON, Canada, 1976. [Google Scholar]
- Arnfield, A.J. An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys. Geogr. 1982, 3, 97–122. [Google Scholar] [CrossRef]
- Arnfield, A.J. Validation of an estimation model for urban surface albedo. Phys. Geogr. 1988, 9, 361–372. [Google Scholar] [CrossRef]
- Sievers, U.; Zdunkowski, W. A numerical simulation scheme for the albedo of city street canyons. Bound. Layer Meteorol. 1985, 33, 245–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micallef, A. A Simple and Easily Implementable Model for the Prediction of Solar Irradiance for All-Sky Conditions: Model Development, Preliminary Evaluation and Application. Appl. Sci. 2023, 13, 12982. https://doi.org/10.3390/app132412982
Micallef A. A Simple and Easily Implementable Model for the Prediction of Solar Irradiance for All-Sky Conditions: Model Development, Preliminary Evaluation and Application. Applied Sciences. 2023; 13(24):12982. https://doi.org/10.3390/app132412982
Chicago/Turabian StyleMicallef, Alfred. 2023. "A Simple and Easily Implementable Model for the Prediction of Solar Irradiance for All-Sky Conditions: Model Development, Preliminary Evaluation and Application" Applied Sciences 13, no. 24: 12982. https://doi.org/10.3390/app132412982
APA StyleMicallef, A. (2023). A Simple and Easily Implementable Model for the Prediction of Solar Irradiance for All-Sky Conditions: Model Development, Preliminary Evaluation and Application. Applied Sciences, 13(24), 12982. https://doi.org/10.3390/app132412982