Dynamic Dark Channel Prior Dehazing with Polarization
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Principle of Dark Channel Prior Dehazing
2.2. Polarization Detection Theory
2.3. Polarization-Based Dark Channel Prior Dehazing Method
3. Experimental Setup
3.1. Polarization Imaging System
3.1.1. Optical Module
3.1.2. Mechanical Module
3.1.3. Circuit Module
3.2. Polarization Axis Calibration System
4. Experimental Results and Discussion
4.1. Polarization Axis Calibration
4.2. Polarization-Based Dark Channel Prior Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horvath, H. Basic optics, aerosol optics, and the role of scattering for sky radiance. J. Quant. Spectrosc. Ra. 2014, 139, 3–12. [Google Scholar] [CrossRef]
- Raikwar, S.C.; Tapaswi, S. An improved linear depth model for single image fog removal. Multimed. Tools Appl. 2018, 77, 19719–19744. [Google Scholar] [CrossRef]
- Xie, Y.; Ning, L.; Wang, M.; Li, C. Image enhancement based on histogram equalization. J. Phys. Conf. Ser. 2019, 1314, 012161. [Google Scholar] [CrossRef]
- Gao, J.; Wang, B.; Wang, Z.; Kong, F. A wavelet transform-based image segmentation method. Optik 2020, 208, 164123. [Google Scholar] [CrossRef]
- Wang, J.B.; He, N.; Zhang, L.L.; Lu, K. Single image dehazing with a physical model and dark channel prior. Neurocomputing 2015, 149, 718–728. [Google Scholar] [CrossRef]
- Lee, S.; Yun, S.; Nam, J.H.; Won, C.S.; Jung, S.W. A review on dark channel prior based image dehazing algorithms. EURASIP J. Image Video Process. 2016, 2016, 4. [Google Scholar] [CrossRef]
- Peng, Y.T.; Cao, K.; Cosman, P.C. Generalization of the dark channel prior for single image restoration. IEEE Trans. Image Process. 2018, 27, 2856–2868. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Zhou, C.; Teng, M.; Han, Y.; Xu, C.; Shi, B. Learning to dehaze with polarization. NIPS 2021, 34, 11487–11500. [Google Scholar]
- Wu, M.; Zhang, C. Optimizing polarization dehazing. Mod. Phys. Lett. B 2021, 35, 2150332. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Han, P.; Wei, Y.; Zhao, D.; Shao, X.; Zhao, X. Research on polarization dehazing through the coaxial and multi-aperture polarimetric camera. OSA Contin. 2019, 2, 2369–2380. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, J.; Wang, G.; Zhang, H.; Fu, S. Review of passive polarimetric dehazing methods. Opt. Eng. 2021, 60, 030901. [Google Scholar] [CrossRef]
- Tuchin, V.V. Polarized light interaction with tissues. J. Biomed. Opt. 2016, 21, 071114. [Google Scholar] [CrossRef]
- Cheng, S.C.; Lee, K.C.; Huang, C.W. Radar target recognition by polarization-diversity RCS including random effects. Int. J. Appl. Electron. 2015, 47, 939–949. [Google Scholar] [CrossRef]
- Dubreuil, M.; Delrot, P.; Leonard, I.; Alfalou, A.; Brosseau, C.; Dogariu, A. Exploring underwater target detection by imaging polarimetry and correlation techniques. Appl. Opt. 2013, 52, 997–1005. [Google Scholar] [CrossRef]
- Ma, T.; Hu, X.; Lian, J.; Zhang, L. A Novel Calibration Model of Polarization Navigation Sensor. IEEE Sens. J. 2015, 15, 4241–4248. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, D.; Xu, Y.; Wang, C.; Yuan, B. Research of polarized image defogging technique based on dark channel priori and guided filtering. Procedia Comput. Sci. 2018, 131, 289–294. [Google Scholar] [CrossRef]
- Jia, Q.; Hou, Q. Haze Removal Using Polarization Dark Channel Prior with Applications to Marine Target Enhancement. Opt. Express 2019, 27, 33765–33782. [Google Scholar]
- Meng, Y.; Liu, C.; Wang, X.; Zhou, Z. Polarization Dehazing with Dual Images Based on Dark Channel Quartering. In Fourier Transform Spectroscopy; Optica Publishing Group: Washington, DC, USA, 2021; paper ID JTu5A. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vision 2002, 48, 233–254. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE. Pattern Anal. 2010, 33, 2341–2353. [Google Scholar]
- Siegman, A. Fresnel reflection, Lenserf reflection and evanescent gain. Opt. Photonics News 2010, 21, 38–45. [Google Scholar] [CrossRef]
- Lu, X.; Jin, W.; Li, L.; Wang, X.; Qiu, S.; Liu, J. Theory and analysis of a large field polarization imaging system with obliquely incident light. Opt. Express 2018, 26, 2495–2508. [Google Scholar] [CrossRef] [PubMed]
- Śliwa, R.E.; Pawłowska, B.; Balawender, T.; Zwolak, M. Extrusion of Lightweight Aluminum and Magnesium Alloys Structures for Aviation Applications. Key Eng. Mater. 2022, 926, 523–536. [Google Scholar] [CrossRef]
- Xu, M.J.; Gbur, G.; Visser, T.D. Generalization of Malus’ law and spatial coherence relations for linear polarizers and non-uniform polarizers. Opt. Lett. 2022, 47, 5739–5742. [Google Scholar] [CrossRef]
Methods | Original | DCP | PDCP |
---|---|---|---|
NIQE of region1 | 12.189 | 6.734 | 5.010 |
NIQE of region2 | 14.562 | 8.018 | 5.531 |
NIQE of region3 | 14.033 | 10.091 | 6.233 |
Contrast | |||
---|---|---|---|
Scene/Time | Original | DCP | PDCP |
(a)/t1 | 0.046 | 0.104 | 0.142 |
(a)/t2 | 0.035 | 0.091 | 0.217 |
(a)/t3 | 0.033 | 0.091 | 0.233 |
(a)/t4 | 0.032 | 0.087 | 0.236 |
(a)/mean value | 0.036 | 0.093 | 0.207 |
(b)/t1 | 0.155 | 0.336 | 0.411 |
(b)/t2 | 0.104 | 0.271 | 0.307 |
(b)/t3 | 0.030 | 0.211 | 0.289 |
(b)/t4 | 0.144 | 0.313 | 0.402 |
(b)/mean value | 0.108 | 0.282 | 0.352 |
(c)/t1 | 0.311 | 0.528 | 0.694 |
(c)/t2 | 0.164 | 0.339 | 0.607 |
(c)/t3 | 0.159 | 0.411 | 0.481 |
(c)/t4 | 0.214 | 0.379 | 0.597 |
(c)/mean value | 0.212 | 0.414 | 0.594 |
(d)/t1 | 0.093 | 0.166 | 0.270 |
(d)/t2 | 0.120 | 0.163 | 0.183 |
(d)/t3 | 0.097 | 0.139 | 0.310 |
(d)/t4 | 0.085 | 0.091 | 0.216 |
(d)/mean value | 0.122 | 0.140 | 0.244 |
(e)/t1 | 0.288 | 0.361 | 0.459 |
(e)/t2 | 0.339 | 0.627 | 1.088 |
(e)/t3 | 0.151 | 0.279 | 0.341 |
(e)/t4 | 0.197 | 0.406 | 0.835 |
(e)/mean value | 0.244 | 0.418 | 0.795 |
Contrast | |||
---|---|---|---|
Region | Channel R | Channel G | Channel B |
1 | 0.097 | 0.386 | 0.614 |
2 | 0.123 | 0.243 | 0.318 |
Polarization Information Record | |||
---|---|---|---|
Region | Channel R | Channel G | Channel B |
1 | 0.169 | 0.264 | 0.443 |
2 | 0.158 | 0.192 | 0.205 |
3 | 0.205 | 0.117 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, H.; Guan, J.; Ma, M.; Huo, Y.; Cheng, Y.; Wei, N.; Zhang, L. Dynamic Dark Channel Prior Dehazing with Polarization. Appl. Sci. 2023, 13, 10475. https://doi.org/10.3390/app131810475
Suo H, Guan J, Ma M, Huo Y, Cheng Y, Wei N, Zhang L. Dynamic Dark Channel Prior Dehazing with Polarization. Applied Sciences. 2023; 13(18):10475. https://doi.org/10.3390/app131810475
Chicago/Turabian StyleSuo, Haotong, Jinge Guan, Miao Ma, Yongsheng Huo, Yaoyu Cheng, Naying Wei, and Liying Zhang. 2023. "Dynamic Dark Channel Prior Dehazing with Polarization" Applied Sciences 13, no. 18: 10475. https://doi.org/10.3390/app131810475
APA StyleSuo, H., Guan, J., Ma, M., Huo, Y., Cheng, Y., Wei, N., & Zhang, L. (2023). Dynamic Dark Channel Prior Dehazing with Polarization. Applied Sciences, 13(18), 10475. https://doi.org/10.3390/app131810475