Mycotoxin Level in Winter Wheat Grain as Impacted by Nitrogen and Manganese Fertilisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Design of Experiment
2.3. Weather Conditions
2.4. Determination of N and Mn Content of Grain
2.5. The Severity of Fusarium Head Blight (Fusarium spp.) in Winter Wheat
2.6. Mycotoxin Analysis
2.7. Grain Yield
2.8. Statistical Analysis
3. Results
3.1. N and Mn Content of Wheat Grain
3.2. Infestation with Fusarium spp.
3.3. Mycotoxin Content
3.4. Winter Wheat Grain Yield
3.5. Principal Component Analysis (PCA)
4. Discussion
4.1. N and Mn Content of Wheat Grain
4.2. Fusarium spp. Infestation and Mycotoxin Level
4.3. Grain Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wojtkowiak, K.; Warechowska, M.; Stępień, A.; Raczkowski, M. Crop yield and micronutrient contents (Cu, Fe, Mn and Zn) in spring wheat grain depending on the fertilization method. J. Cent. Eur. Agric. 2017, 18, 135–149. Available online: https://hrcak.srce.hr/178340 (accessed on 31 July 2023). [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Saquee, F.S.; Diakite, S.; Kavhiza, N.J.; Pakina, E.; Zargar, M. The Efficacy of Micronutrient Fertilizers on the Yield Formulation and Quality of Wheat Grains. Agronomy 2023, 13, 566. [Google Scholar] [CrossRef]
- El Chami, J.; El Chami, E.; Tarnawa, Á.; Kassai, K.M.; Kende, Z.; Jolánkai, M. Effect of Fusarium infection on wheat quality parameters. Cereal. Res. Commun. 2023, 51, 179–187. [Google Scholar] [CrossRef]
- Hýsek, J.; Vavera, R.; Růžek, P. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat. Int. J. Biometeorol. 2017, 61, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Luo, P. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. Int. J. Mol. Sci. 2021, 22, 8865. [Google Scholar] [CrossRef] [PubMed]
- Wegulo, S.N.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium head blight of wheat and barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Różewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals-Problems and possible solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Czaban, J.; Wróblewska, B.; Sułek, A.; Podolska, G. The influence of different production technologies of winter wheat on colonization of its grain by fungi of the genus fusarium. Pol. J. Agron. 2011, 5, 11–20. (In Polish) [Google Scholar]
- Xu, X.M.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Cooke, B.M.; Doohan, F.M.; Brennan, J.; Monaghan, S.; Moretti, A.; Mule, G.; et al. Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology 2008, 98, 69–78. [Google Scholar] [CrossRef]
- Francl, L. Development of Fusarium head blight in relation to environment and inoculum. In Proceedings National Fusarium Head Blight Forum; Michigan State University, University Printing: East Lansing, MI, USA, 1998; pp. 26–27. [Google Scholar]
- Doohan, F.M.; Brennan, J.; Cooke, B.M. Influence of climatic factors on Fusarium species pathogenic to cereals. In Epidemiology of Mycotoxin Producing Fungi: Under the Aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003′, EU Project (QLK 1-CT-1998–01380); Kluwer Academic Publishers: Norwell, MA, USA, 2003; pp. 755–768. [Google Scholar]
- Czaban, J.; Wróblewska, B.; Sułek, A.; Mikos, M.; Boguszewska, E.; Podolska, G.; Nieróbca, A. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. Food Addit. Contam. Part A 2015, 32, 874–910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Raza, W.; Yang, X.; Hu, J.; Huang, Q.; Xu, Y.; Liu, X.; Ran, W.; Shen, Q. Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol. Fert. Soils 2008, 44, 1073–1080. [Google Scholar] [CrossRef]
- Spanic, V.; Cosic, J.; Zdunic, Z.; Drezner, G. Characterization of agronomical and quality traits of winter wheat (Triticum aestivum L.) for fusarium head blight pressure in different environments. Agronomy 2021, 11, 213. [Google Scholar] [CrossRef]
- Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Natural occurrence of nivalenol, deoxynivalenol, and deoxynivalenol-3-glucoside in Polish winter wheat. Toxins 2018, 10, 81. [Google Scholar] [CrossRef]
- Chhaya, R.S.; O’Brien, J.; Cummins, E. Feed to fork risk assessment of mycotoxins under climate change influences-recent developments. Trends Food Sci. Technol. 2021, 126, 126–141. [Google Scholar] [CrossRef]
- Müller, M.E.H.; Steier, I.; Köppen, R.; Siegel, D.; Proske, M.; Korn, U.; Koch, M. Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. J. Appl. Microbiol. 2012, 113, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef]
- Kochiieru, Y.; Mankevičienė, A.; Cesevičienė, J.; Semaškienė, R.; Ramanauskienė, J.; Gorash, A.; Janavičienė, S.; Venslovas, E. The impact of harvesting time on Fusarium mycotoxins in spring wheat grain and their interaction with grain quality. Agronomy 2021, 11, 642. [Google Scholar] [CrossRef]
- Gerling, M.; Petry, L.; Barkusky, D.; Büttner, C.; Müller, M.E. Infected grasses as inoculum for Fusarium infestation and mycotoxin accumulation in wheat with and without irrigation. Mycotoxin Res. 2023, 39, 19–31. [Google Scholar] [CrossRef]
- Lemmens, M.; Haim, K.; Lew, H.; Ruckenbauer, P. The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J. Phytopathol. 2004, 152, 1–8. [Google Scholar] [CrossRef]
- Aufhammer, W.; Kübler, E.; Kaul, H.P.; Hermann, W.; Höhn, D.; Yi, C. Infection with head blight (F. graminearum, F. culmorum) and deoxynivalenol concentration in winter wheat as influenced by N fertilization. Pflanzenbauwissenschaften 2000, 4, 72–78. [Google Scholar]
- Krnjaja, V.; Mandić, V.; Lević, J.; Stanković, S.; Petrović, T.; Vasić, T.; Obradović, A. Influence of N-fertilization on Fusarium head blight and mycotoxin levels in winter wheat. Crop Prot. 2015, 67, 251–256. [Google Scholar] [CrossRef]
- Cwalina-Ambroziak, B.; Stępień, A.; Waśkiewicz, A.; Grzywińska-Rąpca, M. The Effect of Foliar Fertilization with Micronutrients on Disease Severity and Mycotoxin Concentrations in the Grain of Winter Spelt (Triticum aestivum spp. Spelta L.): A Case Study. Agronomy 2021, 11, 678. [Google Scholar] [CrossRef]
- Supronienė, S.; Mankevičienė, A.; Kadžienė, G.; Kačergius, A.; Feiza, V.; Feizienė, D.; Semaškienė, R.; Dabkevičius, Z.; Tamošiūnas, K. The impact of tillage and fertilzation on Fusarium infection and mycotoxin production in wheat grains. Zemdirb. Agric. 2012, 99, 265–272. [Google Scholar]
- Podolska, G.; Bryła, M.; Sułek, A.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Influence of the cultivar and nitrogen fertilisation level on the mycotoxin contamination in winter wheat. Qual. Assur. Saf. Crop. Foods 2017, 9, 451–461. [Google Scholar] [CrossRef]
- Bernhoft, A.; Torp, M.; Clasen, P.E.; Løes, A.K.; Kristoffersen, A.B. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Addit. Contam. Part A 2012, 29, 1129–1140. [Google Scholar] [CrossRef]
- Champeil, A.; Doré, T.; Fourbet, J.F. Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 2004, 166, 1389–1415. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Socha, A.L.; Guerinot, M.L. Mn-euvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci. 2014, 5, 106. [Google Scholar] [CrossRef]
- Łacicowa, B. Investigations on Helminthosporium sorokinianum (H. sati um) strains and on the resistance of spring barley varieties to this pathogenic factor. Acta Mycol. 1970, 6, 184–248. (In Polish) [Google Scholar]
- Goliński, P.; Waśkiewicz, A.; Wiśniewska, H.; Kiecana, I.; Mielniczuk, E.; Gromadzka, K.; Kostecki, M.; Bocianowski, J.; Rymaniak, E. Reaction of winter wheat (Triticum aestivum L.) cultivars to infection with Fusarium spp.: Mycotoxin contamination in grain and chaff. Food Addit. Contam. 2010, 27, 1015–1024. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Irzykowska, L.; Drzewiecka, K.; Bocianowski, J.; Dobosz, B.; Weber, Z.; Karolewski, Z.; Krzyminiewski, R.; Goliński, P. Plant-pathogen interactions during infection process of asparagus with Fusarium spp. Open Life Sci. 2013, 8, 1065–1076. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef] [PubMed]
- Guttieri, M.J.; Baenziger, P.S.; Frels, K.; Carver, B.; Arnall, B.; Waters, B.M. Variation for grain mineral concentration in a diversity panel of current and historical Great Plains hard winter wheat germplasm. Crop. Sci. 2015, 55, 1035–1052. [Google Scholar] [CrossRef]
- Smith, E.G.; Janzen, H.H.; Ellert, B.H. Effect of fertilizer and cropping system on grain nutrient concentrations in spring wheat. Can. J. Plant Sci. 2017, 98, 125–131. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Römheld, V.; Zou, C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Hamnér, K.; Weih, M.; Eriksson, J.; Kirchmann, H. Influence of nitrogen supply on macro-and micronutrient accumulation during growth of winter wheat. Field Crops Res. 2017, 213, 118–129. [Google Scholar] [CrossRef]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Vickers, K.; Jones, R.L. Biochemistry and Molecular Biology of Plants; Wiley-Blackwell: New York, NY, USA, 2015. [Google Scholar]
- Wojtkowiak, K.; Stepien, A.; Pietrzak-Fiecko, R.; Werechowska, M. Effects of nitrogen fertilisation on the yield, micronutrient content and fatty acid profiles of winter wheat (Triticum aestivum L.) varieties. J. Elem. 2018, 23, 483–495. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Buczek, J.; Jarecki, W.; Bobrecka-Jamro, D. Effect of high nitrogen doses on yield, quality and chemical composition grain of winter wheat cultivars. J. Elem. 2020, 25, 1005–1017. [Google Scholar] [CrossRef]
- Svecnjak, Z.; Jenel, M.; Bujan, M.; Vitali, D.; Dragojević, I.V. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agric. Food Sci. 2013, 22, 445–451. [Google Scholar] [CrossRef]
- Klikocka, H.; Marks, M. Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. J. Chem. 2018, 2018, 9326820. [Google Scholar] [CrossRef]
- Dolijanović, Ž.; Nikolić, R.S.; Kovacević, D.; Djurdjić, S.; Miodragović, R.; Todorović-Jovanovic, M.; Djordjević, P.J. Mineral profile of the winter wheat grain: Effects of soil tillage systems and nitrogen fertilization. Appl. Ecol. Environ. Res. 2019, 17, 11757–11771. [Google Scholar] [CrossRef]
- Lacey, J.; Bateman, G.L.; Mirocha, C.J. Effects of infection time and moisture on development of ear blight and deoxynivalenol production by Fusarium spp. in wheat. Ann. Appl. Biol. 1999, 134, 277–283. [Google Scholar] [CrossRef]
- Reyneri, A. The role of climatic condition on micotoxin production in cereal. Vet. Res. Commun. 2006, 30, 87–92. [Google Scholar] [CrossRef]
- Habibi, H.; Nabizadeh, E.; Hossienpour, M. The effect of Fertilizers and biologiical nitrogen and planting density on yield quality and quantity. Eur. J. Exp. Biol. 2012, 2, 1326–1336. [Google Scholar]
- Hassegawa, R.H.; Fonseca, H.; Fancelli, A.L.; da Silva, V.N.; Schammass, E.A.; Reis, T.A.; Corrêa, B. Influence of macro-and micronutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control 2008, 19, 36–43. [Google Scholar] [CrossRef]
- Matić, M.; Vuković, R.; Vrandečić, K.; Štolfa Čamagajevac, I.; Ćosić, J.; Vuković, A.; Sabljić, K.; Sabo, N.; Dvojković, K.; Novoselović, D. Oxidative status and antioxidative response to Fusarium attack and different nitrogen levels in winter wheat varieties. Plants 2021, 10, 611. [Google Scholar] [CrossRef] [PubMed]
- Maywald, N.J.; Francioli, D.; Mang, M.; Ludewig, U. Role of Mineral Nitrogen Nutrition in Fungal Plant Diseases of Cereal Crops. Crit. Rev. Plant Sci. 2023, 42, 93–123. [Google Scholar] [CrossRef]
- Reid, L.M.; Zhu, X.; Ma, B.L. Crop rotation and nitrogen effects on maize susceptibility to gibberella (Fusarium graminearum) ear rot. Plant Soil 2001, 237, 1–14. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Lemańczyk, G. Effect of nitrogen fertilization on health status of some winter wheat cultivars grown on light soil. Prog. Plant Prot. 2013, 53, 494–497. (In Polish) [Google Scholar]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Nielsen, L.K.; Walentyn-Góral, D.; Stępień, Ł. Relationship between Fusarium head blight, kernel damage, concentration of Fusarium biomass, and Fusarium toxins in grain of winter wheat inoculated with Fusarium culmorum. Toxins 2018, 11, 2. [Google Scholar] [CrossRef]
- Wickiel, G.; Filoda, G. Fungicide protection and presence of fusarium ear symptoms and deoxynivalenol content in the grain of winter spelt. Ochrona fungicydowa a obecność objawów fuzariozy kłosów i deoksyniwalenolu w ziarnie pszenicy ozimej orkisz. Prog. Plant Prot. 2012, 52, 676–679. (In Polish) [Google Scholar]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Mishra, S.; Chauhan, D.K.; Dubey, N.K. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiol. Plant 2015, 37, 1–14. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Eisenhut, M.; Schneider, A. Chloroplast transition metal regulation for efficient photosynthesis. Trends Plant Sci. 2020, 25, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Ierna, A.; Lombardo, G.M.; Mauromicale, G. Yield, nitrogen use efficiency and grain quality in durum wheat as affected by nitrogen fertilization under a Mediterranean environment. Exp. Agric. 2016, 52, 314–329. [Google Scholar] [CrossRef]
- Stępień, A.; Wojtkowiak, K. Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chil. J. Agric. Res. 2016, 76, 220–227. [Google Scholar] [CrossRef]
- Aziz, M.Z.; Yaseen, M.; Abbas, T.; Naveed, M.; Mustafa, A.; Hamid, Y.; Saeed, Q.; Xu, M.G. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. J. Integr. Agric. 2019, 18, 1369–1378. [Google Scholar] [CrossRef]
- Dweba, C.C.; Figlan, S.; Shimelis, H.A.; Motaung, T.E.; Sydenham, S.; Mwadzingeni, L.; Tsilo, T.J. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Prot. 2017, 91, 114–122. [Google Scholar] [CrossRef]
- Spanic, V.; Lemmens, M.; Drezner, G. Variability of components of Fusarium head blight resistance among wheat genotypes. Cereal Res. Commun. 2013, 41, 420–430. [Google Scholar] [CrossRef]
Item | Description |
---|---|
Land tilling (2013–2016) | Postharvest tilling (August)—disking (10 cm). Pre-sowing tilling (September)—ploughing (20 cm), harrowing, fertiliser-covering harrowing. |
Cultivar description | Smuga: a quality cultivar, very early ear formation, a large mass of thousand grains, medium resistance to diseases (Fusarium head blight 7.2 on the scale of 1–9°). |
Sowing description | Area of plots for sowing 2.2 m × 4.5 m = 9.9 m2 Plot row drill, sowing with rows spaced every 12 cm, sowing density 550 grains m−2 |
Fertilisation * | The same on each plot: phosphorus: 79.6 kg N ha−1 (triple superphosphate, 20.1% P), potassium: 83.1 N ha−1 (potassium salt, 49.8% K). |
Protection against weeds (monocotyledonous and dicotyledonous) | Spraying against monocotyledonous weeds: Axial 100 EC 0.4 L ha−1 (pinoxaden—50 g L) Spraying against dicotyledonous weeds: Mustang Forte 195 SE 1.0 L ha−1 (florasulam 5 g L, aminopyralid 10 g L, 2.4 D 180 g L) |
Protection against diseases | Not applied |
Protection against pests | Not applied |
Harvesting | Area of plots for harvesting: 2.0 m × 4.0 m = 8.0 m−2 Plot combine harvester (Wintersteiger Classic 1540, STEURER Trocknungs- und Aufbewahrungssysteme GmbH, Altach, Austria) |
Main growth stages | Sowing dates (BBCH 00): 11.09.2013, 15.09.2014, 18.09.2015 Emergence (BBCH 09): 18.09.2013, 24.09.2014, 25.09.2015 Beginning of tillering (BBCH 21): 21.10.2013, 20.10.2014, 22.10.2015 Beginning of heading (BBCH 51): 26.05.2014, 26.05.2015, 25.05.2016 Harvest date (BBCH 91): 25.07.2014, 03.08.2015, 25.07.2016 |
Soil characteristics | Grey-brown podzolic soil, with the granulometric composition of medium silty clay. According to the World Reference Base for Soil Resources (WRB, 2014), this corresponds to a soil profile called Haplic Cambisol. Slightly acidic (in KCl solution with pH 5.7); the content of Corganic: 10.1–10.5 g kg−1; Ntotal: 0.97–1.02 g kg−1; P: 83.3–86.0 mg kg−1; K: 145.0–155.1 mg kg−1; Mg: 68.7–72.3 mg kg−1; and Mn: 145.0–150.2 mg kg−1 |
Treatment | Mineral Component/Development Phases/BBCH Phase/Fertiliser Form/Dose | ||||
---|---|---|---|---|---|
N | Mn | ||||
Pre-Sowing | Tillering/BBCH 25–29 | Stem Elongation/BBCH 30–31 | Heading/ BBCH 51–52 | Stem Elongation/ BBCH 30–31 | |
Urea 46% (CO(NH₂)₂) | Ammonium Nitrate 34% (NH4NO3) | Ammonium Nitrate 34% (NH4NO3) | Urea 46% (CO(NH₂)₂), Foliar Application of a 10% Solution | 0.5% Solution of MnSO4 5H2O | |
Without fertilisation | - | - | - | - | - |
150 kg N ha−1 | 40 | 70 | 30 | 10 | - |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 0.5 | ||||
150 kg N ha−1 + 1.5 kg Mn ha−1 | 1.5 | ||||
200 kg N ha−1 | 40 | 80 | 60 | 20 | - |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 0.5 | ||||
200 kg N ha−1 + 1.5 kg Mn ha−1 | 1.5 |
Growing Season | Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IX | X | XI | XII | I | II | III | IV | V | VI | VII | VIII | Av. IX–VIII | |
Temperature | |||||||||||||
2013/2014 | 11.3 | 8.9 | 5.0 | 2.3 | −4.0 | 1.2 | 5.1 | 8.8 | 13.0 | 14.4 | 20.4 | 17.1 | 8.6 |
2014/2015 | 13.6 | 8.7 | 3.7 | −0.4 | 0.4 | 0.5 | 4.2 | 6.7 | 11.8 | 15.5 | 17.5 | 19.8 | 8.5 |
2015/2016 | 13.5 | 6.1 | 4.8 | 3.4 | −4.0 | 2.3 | 3.0 | 7.4 | 13.7 | 17.1 | 18.1 | 17.1 | 8.5 |
1981–2010 | 12.8 | 8.0 | 2.9 | −0.9 | −2.4 | −1.7 | 1.8 | 7.7 | 13.5 | 16.1 | 18.7 | 17.9 | 7.9 |
Rainfall | |||||||||||||
IX | X | XI | XII | I | II | III | IV | V | VI | VIII | VIII | Sum IX–VIII | |
2013/2014 | 101.1 | 16.0 | 18.0 | 27.7 | 48.4 | 8.1 | 57.7 | 26.0 | 32.7 | 50.8 | 37.3 | 86.1 | 509.9 |
2014/2015 | 25.9 | 15.1 | 34.0 | 61.8 | 46.8 | 6.8 | 45.1 | 38.2 | 29.7 | 29.5 | 81.9 | 14.3 | 429.1 |
2015/2016 | 63.8 | 19.4 | 84.5 | 56.6 | 24.7 | 57.1 | 21.6 | 28.8 | 56.9 | 69.3 | 130.4 | 70.4 | 683.5 |
1981–2010 | 56.9 | 42.6 | 44.8 | 38.2 | 36.4 | 24.2 | 32.9 | 33.3 | 58.5 | 80.4 | 74.2 | 59.4 | 581.7 |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 12.27 h | 15.25 gh | 21.34 bc | 16.3 d |
150 kg N ha−1 | 15.63 g | 19.20 c–f | 23.84 ab | 19.6 c |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 16.11 fg | 19.47 c–e | 25.76 a | 20.4 a–c |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 15.84 g | 19.95 c–e | 23.89 ab | 19.9 bc |
200 kg N ha−1 | 17.76 d–g | 20.85 b–d | 25.07 a | 21.2 ab |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 17.49 e–g | 20.96 bc | 26.13 a | 21.5 a |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 17.49 e–g | 21.33 bc | 24.94 a | 21.2 ab |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 19.83 l | 20.37 l | 29.70 d–f | 23.30 b |
150 kg N ha−1 | 20.90 kl | 22.57 kl | 30.20 de | 24.56 b |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 22.80 kl | 21.83 kl | 29.03 d–g | 24.56 b |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 27.53 d–h | 25.83 f–j | 34.43 bc | 29.97 a |
200 kg N ha−1 | 25.23 g–j | 27.53 d–h | 30.83 cd | 27.87 a |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 23.87 h–l | 24.80 h–k | 35.03 b | 27.90 a |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 26.23 e–i | 24.43 h–k | 38.50 a | 29.72 a |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 12.67 a | 1.33 c | 0.67 c | 1.89 a |
150 kg N ha−1 | 9.67 a–c | 2.00 c | 0.67 c | 4.11 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 9.33 a–c | 0.67 c | 2.67 bc | 4.22 a |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 12.33 ab | 1.33 c | 0.33 c | 4.67 a |
200 kg N ha−1 | 16.67 a | 2.00 c | 1.33 c | 6.67 a |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 15.33 a | 0.67 c | 0.33 c | 5.44 a |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 12.67 a | 0.01 c | 0.67 c | 4.44 a |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 1053.04 bc | 1302.87 a | 944.55 cd | 1100.15 ab |
150 kg N ha−1 | 1118.26 a–c | 1125.58 a–c | 1144.2 a–c | 1119.42 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 1307.98 a | 944.71 cd | 579.20 fg | 943.97 cd |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 807.79 de | 1239.63 ab | 638.45 e–g | 895.29 d |
200 kg N ha−1 | 1055.67 bc | 666.78 e–g | 1329.6 a | 1008.47 bc |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 731.13 e–g | 541.62 g | 762.97 d–f | 678.57 e |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 826.86 de | 531.83 g | 687.26 e–g | 682.65 e |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 559.26 ab | 326.39 ef | 60.30 ij | 315.31 b |
150 kg N ha−1 | 621.02 a | 415.65 d | 77.69 ij | 371.46 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 521.36 bc | 303.25 f | 59.44 ij | 294.68 b |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 454.92 cd | 211.06 g | 87.37 hi | 251.12 c |
200 kg N ha−1 | 478.65 b–d | 392.84 de | 65.84 ij | 312.44 b |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 311.31 ef | 180.23 gh | 45.97 ij | 179.17 d |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 188.47 g | 94.42 hi | 0.01 j | 94.30 e |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 8.78 d–f | 23.28 b | 14.81 ab | |
150 kg N ha−1 | 10.41 de | 7.60 d–f | 30.10 a | 16.03 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 13.21 cd | 7.94 d–f | 12.27 d | 11.14 bc |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 8.48 d–f | 5.55 e–g | 8.21 d–f | 7.41 c |
200 kg N ha−1 | 8.77 d–f | 2.93 fg | 30.99 a | 14.23 ab |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 5.77 e–g | 4.47 e–g | 18.39 bc | 9.55 bc |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 3.15 fg | 0.75 g | 7.93 d–f | 3.94 d |
Treatment | Year | |||
---|---|---|---|---|
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 24.31 g–j | 47.75 b–d | 58.82 ab | 43.63 a |
150 kg N ha−1 | 39.68 c–g | 71.70 a | 28.22 e–i | 46.53 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 19.29 h–j | 56.64 a–c | 18.61 h–j | 31.52 bc |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 24.43 g–j | 26.53 f–i | 38.59 d–g | 29.85 bc |
200 kg N ha−1 | 28.35 e–i | 44.28 b–e | 32.05 d–h | 34.89 b |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 45.81 b–e | 12.26 i–k | 19.48 h–j | 25.85 c |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 43.71 b–f | 0.01 k | 8.15 jk | 17.29 d |
Treatment | Year | |||
2014 | 2015 | 2016 | Average for Treatment | |
Without fertilisation | 6.09 b | 3.11 c–e | 1.53 e | 3.58 b |
150 kg N ha−1 | 10.95 a | 6.19 b | 2.92 c–e | 6.69 a |
150 kg N ha−1 + 0.5 kg Mn ha−1 | 11.32 a | 7.08 b | 2.99 c–e | 7.13 a |
150 kg N ha−1 + 1.5 kg Mn ha−1 | 11.23 a | 5.80 bc | 2.62 de | 6.55 a |
200 kg N ha−1 | 11.25 a | 6.73 b | 3.03 c–e | 7.00 a |
200 kg N ha−1 + 0.5 kg Mn ha−1 | 11.59 a | 6.50 b | 2.70 de | 6.93 a |
200 kg N ha−1 + 1.5 kg Mn ha−1 | 11.76 a | 5.57 b–d | 3.07 c–e | 6.80 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępień, A.; Wojtkowiak, K.; Cwalina-Ambroziak, B.; Waśkiewicz, A. Mycotoxin Level in Winter Wheat Grain as Impacted by Nitrogen and Manganese Fertilisation. Appl. Sci. 2023, 13, 10086. https://doi.org/10.3390/app131810086
Stępień A, Wojtkowiak K, Cwalina-Ambroziak B, Waśkiewicz A. Mycotoxin Level in Winter Wheat Grain as Impacted by Nitrogen and Manganese Fertilisation. Applied Sciences. 2023; 13(18):10086. https://doi.org/10.3390/app131810086
Chicago/Turabian StyleStępień, Arkadiusz, Katarzyna Wojtkowiak, Bożena Cwalina-Ambroziak, and Agnieszka Waśkiewicz. 2023. "Mycotoxin Level in Winter Wheat Grain as Impacted by Nitrogen and Manganese Fertilisation" Applied Sciences 13, no. 18: 10086. https://doi.org/10.3390/app131810086
APA StyleStępień, A., Wojtkowiak, K., Cwalina-Ambroziak, B., & Waśkiewicz, A. (2023). Mycotoxin Level in Winter Wheat Grain as Impacted by Nitrogen and Manganese Fertilisation. Applied Sciences, 13(18), 10086. https://doi.org/10.3390/app131810086