Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method
Abstract
1. Introduction
2. Materials and Methods
2.1. The Samples
2.2. Lattice–Boltzmann Simulations
3. Results
3.1. Pore Structure Characterization
3.2. Pore Network Permeabilities
4. Conclusions
- Somewhat overpredict the permeability of very tight pore least permeable samples due to underestimations of fluid–wall friction caused by the application of half-bounce-back boundary conditions;
- Somewhat underestimate the permeabilities of more permeable samples with open porosity due to a neglect of the compressibility effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Tables
Sample | 3_A | 3_B | 3_C | 3_D | 3_E | 2_BS | 2_DS | 2_EC | 2_KC |
---|---|---|---|---|---|---|---|---|---|
Average pore volume (voxel), | 260 | 561 | 256 | 527 | 458 | 2824 | 11,376 | 1846 | 2642 |
Average pore volume (µm3), | 450 | 970 | 442 | 911 | 793 | 76,533 | 222,162 | 67,028 | 71,350 |
Max pore volume (voxel), | 34,855 | 45,593 | 101,760 | 93,878 | 84,046 | 674,770 | 659,394 | 438,012 | 1,548,038 |
2.222 ± 0.437 | 2.148 ± 0.36 | 2.204 + 0.419 | 2.271 ± 0.473 | 2.256 ± 0.459 | 2.328 ± 0.492 | 2.284 + 0.462 | 2.303 ± 0.480 | 2.240 ± 0.440 | |
6.462 ± 7.161 | 4.736 ± 4.265 | 6.209 ± 7.229 | 7.817 ± 9.854 | 7.175 ± 8.529 | 12.316 + 16.101 | 10.300 ± 13.227 | 8.465 ± 13.487 | 7.568 + 10.033 |
Sample Pack | Computational Resources | CPU | Time, Seconds | Number of Iterations | MLUPS * Per Core |
---|---|---|---|---|---|
Group 1 | 60 CPU cores | Intel Xeon Gold 6136 | ∼9000 | ∼12,000–25,000 | 5.2 |
Group 2 | 80 CPU cores | Intel Xeon Gold 6230 | ∼72,000–86,400 | ∼20,000–40,000 | 4.8 |
Appendix B. Tortuosity Computations
References
- Baraboshkin, E.; Demidov, A.; Orlov, D.; Koroteev, D. Core box image recognition and its improvement with a new augmentation technique. Comput. Geosci. 2022, 162, 105099. [Google Scholar] [CrossRef]
- Karnauhov, A. The Texture of Dispersed and Porous Materials; Novosibirsk Science: Novosibirsk, Russia, 1999; p. 470. [Google Scholar]
- Ravikovitch, P.I.; Vishnyakov, A.; Russo, R.; Neimark, A.V. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir 2000, 16, 2311–2320. [Google Scholar] [CrossRef]
- Klobes, P.; Meyer, K.; Munro, P.G. Porosity and Specific Surface Area Measurements for Solid Materials, national g ed; NIST: Gaithersburg, MD, USA, 2006. [Google Scholar] [CrossRef]
- Felipe, C.; Rojas, F.; Kornhauser, I.; Thommes, M.; Zgrablich, G. Mechanistic and experimental aspects of the structural characterization of some model and real systems by nitrogen sorption and mercury porosimetry. Adsorpt. Sci. Technol. 2006, 24, 623–643. [Google Scholar] [CrossRef]
- Hormann, K.; Baranau, V.; Hlushkou, D.; Höltzel, A.; Tallarek, U. Topological analysis of non-granular, disordered porous media: Determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths. New J. Chem. 2016, 40, 4187–4199. [Google Scholar] [CrossRef]
- Orlov, D.; Ebadi, M.; Muravleva, E.; Volkhonskiy, D.; Erofeev, A.; Savenkov, E.; Balashov, V.; Belozerov, B.; Krutko, V.; Yakimchuk, I.; et al. Different methods of permeability calculation in digital twins of tight sandstones. J. Nat. Gas Sci. Eng. 2021, 87, 103750. [Google Scholar] [CrossRef]
- Pot, V.; Zhong, X.; Baveye, P.C. Effect of resolution, reconstruction settings, and segmentation methods on the numerical calculation of saturated soil hydraulic conductivity from 3D computed tomography images. Geoderma 2020, 362, 114089. [Google Scholar] [CrossRef]
- Cnudde, V.; Masschaele, B.; Dierick, M.; Vlassenbroeck, J.; Hoorebeke, L.V.; Jacobs, P. Recent progress in X-ray CT as a geosciences tool. Appl. Geochem. 2006, 21, 826–832. [Google Scholar] [CrossRef]
- Sudakov, O.; Burnaev, E.; Koroteev, D. Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks. Comput. Geosci. 2019, 127, 91–98. [Google Scholar] [CrossRef]
- Santos, J.E.; Xu, D.; Jo, H.; Landry, C.J.; Prodanović, M.; Pyrcz, M.J. PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media. Adv. Water Resour. 2020, 138, 103539. [Google Scholar] [CrossRef]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef]
- Succi, S. Lattice Fluid Dynamics: Thirty-five Years Down the Road. Comptes Rendus. Mécanique 2022, 350, 1–12. [Google Scholar] [CrossRef]
- Zacharoudiou, I.; Boek, E.S.; Crawshaw, J. The impact of drainage displacement patterns and Haines jumps on CO2 storage efficiency. Sci. Rep. 2018, 8, 15561. [Google Scholar] [CrossRef]
- Ataei, M.; Shaayegan, V.; Costa, F.; Han, S.; Park, C.B.; Bussmann, M. LBfoam: An open-source software package for the simulation of foaming using the Lattice Boltzmann Method. Comput. Phys. Commun. 2021, 259. [Google Scholar] [CrossRef]
- Saxena, N.; Hofmann, R.; Alpak, F.O.; Berg, S.; Dietderich, J.; Agarwal, U.; Tandon, K.; Hunter, S.; Freeman, J.; Wilson, O.B. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks. Adv. Water Resour. 2017, 109, 211–235. [Google Scholar] [CrossRef]
- Balashov, V.A.; Savenkov, E.B.; Chetverushkin, B.N. Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples. Math. Models Comput. Simul. 2020, 12, 110–124. [Google Scholar] [CrossRef]
- Pimanov, V.; Lukoshkin, V.; Toktaliev, P.; Iliev, O.; Muravleva, E.; Orlov, D.; Krutko, V.; Avdonin, A.; Steiner, K.; Koroteev, D. On a workflow for efficient computation of the permeability of tight sandstones. arXiv 2022, arXiv:2203.11782. [Google Scholar]
- Verri, I.; Della Torre, A.; Montenegro, G.; Onorati, A.; Duca, S.; Mora, C.A.; Radaelli, F.; Trombin, G. Development of a Digital Rock Physics workflow for the analysis of sandstones and tight rocks. J. Pet. Sci. Eng. 2017, 156, 790–800. [Google Scholar] [CrossRef]
- Koroteev, D.; Dinariev, O.; Evseev, N.; Klemin, D.; Nadeev, A.; Safonov, S.; Gurpinar, O.; Berg, S.; van Kruijsdijk, C.; Armstrong, R.; et al. Direct Hydrodynamic Simulation of Multiphase Flow in Porous Rock. Int. Symp. Soc. Core Anal. 2013, 1–12. [Google Scholar]
- Arns, C.H.; Adler, P.M. Fast Laplace solver approach to pore-scale permeability. Phys. Rev. E 2018, 97, 1–9. [Google Scholar] [CrossRef]
- Boek, E.S.; Venturoli, M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 2010, 59, 2305–2314. [Google Scholar] [CrossRef]
- D’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2002, 360, 437–451. [Google Scholar] [CrossRef]
- Ginzbourg, I.; Adler, P.M. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. De Phys. II 1994, 4, 191–214. [Google Scholar] [CrossRef]
- Ginzburg, I.; D’Humières, D. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2003, 68, 1–30. [Google Scholar] [CrossRef]
- Gray, F.; Boek, E. Enhancing Computational Precision for Lattice Boltzmann Schemes in Porous Media Flows. Computation 2016, 4, 11. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, T.S. Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2002, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Filippova, O.; Hänel, D. Grid Refinement for Lattice-BGK Models. J. Comput. Phys. 1998, 147, 219–228. [Google Scholar] [CrossRef]
- Rao, P.; Schaefer, L. Permeability estimation on tomographic images using curved boundary schemes in the lattice Boltzmann method. Adv. Water Resour. 2020, 143, 103685. [Google Scholar] [CrossRef]
- Chen, L.; Fang, W.; Kang, Q.; De’Haven Hyman, J.; Viswanathan, H.S.; Tao, W.Q. Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg’s effect. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015, 91. [Google Scholar] [CrossRef]
- Yi, J.; Xing, H. Finite element lattice Boltzmann method for fluid flow through complex fractured media with permeable matrix. Adv. Water Resour. 2018, 119, 28–40. [Google Scholar] [CrossRef]
- Zambrano, M.; Volatili, T.; Mancini, L.; Pitts, A.; Giorgioni, M.; Tondi, E. Pore-scale dual-porosity and dual-permeability modeling in an exposed multi-facies porous carbonate reservoir. Mar. Pet. Geol. 2021, 128, 105004. [Google Scholar] [CrossRef]
- Zambrano, M.; Tondi, E.; Mancini, L.; Lanzafame, G.; Trias, F.X.; Arzilli, F.; Materazzi, M.; Torrieri, S. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones. Adv. Water Resour. 2018, 115, 95–111. [Google Scholar] [CrossRef]
- Berg, C.F. Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity. Transp. Porous Media 2014, 103, 381–400. [Google Scholar] [CrossRef]
- Liu, Z.; Herring, A.; Robins, V.; Armstrong, R.T. Prediction of Permeability From Euler Characteristic of 3D Images. In Proceedings of the International Symposium of the Society of Core Analysts, Vienna, Austria, 27 August–1 September 2017; pp. 1–12. [Google Scholar]
- Soares, J.; Andrade, P. A model for permeablility of carbonate rocks based on pore connectivity and pore size. In Proceedings of the 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July–3 August 2017; pp. 977–981. [Google Scholar] [CrossRef]
- Micro-CT Images of Sandstone and Carbonate Rocks[Dataset]. 2015. Available online: https://www.imperial.ac.uk/earth-science/research/research-groups/pore-scale-modelling/micro-ct-images-and-networks/ (accessed on 20 January 2020).
- Raeini, A.Q.; Blunt, M.J.; Bijeljic, B. Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Adv. Water Resour. 2014, 74, 116–126. [Google Scholar] [CrossRef]
- Dong, H.; Blunt, M.J. Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 1–11. [Google Scholar] [CrossRef]
- Raeini, A.Q.; Bijeljic, B.; Blunt, M.J. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. Phys. Rev. E 2017, 96, 1–17. [Google Scholar] [CrossRef]
- Suzuki, A.; Miyazawa, M.; Minto, J.M.; Tsuji, T.; Obayashi, I.; Hiraoka, Y.; Ito, T. Flow estimation solely from image data through persistent homology analysis. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Muljadi, B.P.; Blunt, M.J.; Raeini, A.Q.; Bijeljic, B. The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. Adv. Water Resour. 2016, 95, 329–340. [Google Scholar] [CrossRef]
- Orlov, D.; Ebadi, M.; Koroteev, D.; Makhotin, I.; Belozerov, B.; Krutko, V.; Yakimchuk, I.; Evseev, N. Dataset for Different Methods of Permeability Calculation in Thin-Pore Tight Sandstones[Dataset]. 2020. Available online: https://data.mendeley.com/datasets/s7dn6jvrpw/1 (accessed on 5 May 2020).
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Park, S.w.; Lee, J.; Yoon, H.; Shin, S. Microfluidic Investigation of Salinity-Induced Oil Recovery in Porous Media during Chemical Flooding. Energy Fuels 2021, 35, 4885–4892. [Google Scholar] [CrossRef]
- Kotsalos, C.; Latt, J.; Beny, J.; Chopard, B. Digital blood in massively parallel CPU/GPU systems for the study of platelet transport. Interface Focus 2020, 11, 20190116. [Google Scholar] [CrossRef]
- Poureslami, P.; Siavashi, M.; Moghimi, H.; Hosseini, M. Pore-scale convection-conduction heat transfer and fluid flow in open-cell metal foams: A three-dimensional multiple-relaxation time lattice Boltzmann (MRT-LBM) solution. Int. Commun. Heat Mass Transf. 2021, 126, 105465. [Google Scholar] [CrossRef]
- Latt, J. Choice of Units in Lattice Boltzmann Simulations. 2008. Available online: https://api.semanticscholar.org/CorpusID:106402853 (accessed on 5 May 2020).
- Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method—Principles and Practice; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Kutay, M.E.; Aydilek, A.H.; Masad, E. Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials. Comput. Geotech. 2006, 33, 381–395. [Google Scholar] [CrossRef]
- Asinari, P.; Karlin, I.V. Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability. Phys. Rev. E 2010, 81, 016702. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Gray, F.; Crawshaw, J.; Boek, E. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution. Adv. Water Resour. 2016, 95, 276–287. [Google Scholar] [CrossRef]
- Rabbani, A.; Babaei, M.; Shams, R.; Wang, Y.D.; Chung, T. DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials. Adv. Water Resour. 2020, 146, 103787. [Google Scholar] [CrossRef]
- Dong, H. Micro-CT Imaging and Pore Network Extraction. Ph.D. Thesis, Imperial College London, London, UK, 2008. [Google Scholar]
- Schouten, T.E.; Van Den Broek, E.L. Fast exact Euclidean distance (FEED): A new class of adaptable distance transforms. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2159–2172. [Google Scholar] [CrossRef] [PubMed]
- Neimark, A.V. Multiscale percolation systems. Sov. Phys. 1989, 96, 1386–1396. [Google Scholar]
- Vishnyakov, A.; Mao, R.; Lee, M.T.; Neimark, A.V. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes. J. Chem. Phys. 2018, 148, 024108. [Google Scholar] [CrossRef]
- Lee, M.T.; Vishnyakov, A.; Neimark, A.V. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. J. Chem. Phys. 2016, 144, 014902. [Google Scholar] [CrossRef]
- Zacharov, I.; Arslanov, R.; Gunin, M.; Stefonishin, D.; Bykov, A.; Pavlov, S.; Panarin, O.; Maliutin, A.; Rykovanov, S.; Fedorov, M. “Zhores”—Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology. Open Eng. 2019, 9, 512–520. [Google Scholar] [CrossRef]
Sample | Discretization, Voxels | CT Resolution, µm/Voxel | Total Porosity, % | Effective Porosity, % | Mean Pore Radius , µm |
Mean Pore Radius , Voxel |
---|---|---|---|---|---|---|
Group 1 (sandstones from ICL database [37]) | ||||||
1_BS | 400 | 5.345 | 19.6 | 19.6 | 31.67 | 5.92 |
1_LV60A | 450 | 10.0 | 37.7 | 37.7 | 62.074 | 6.21 |
1_S1 | 300 | 8.683 | 14.1 | 14.1 | 52.96 | 6.09 |
1_S2 | 300 | 4.956 | 24.6 | 24.6 | 31.59 | 6.37 |
1_S9 | 300 | 3.398 | 22.2 | 22.2 | 24.42 | 7.18 |
1_C1 | 400 | 2.85 | 23.3 | 23.3 | 17.47 | 5.14 |
1_A1 | 300 | 3.85 | 42.9 | 42.9 | 24.658 | 6.40 |
Group 2 (select sandstones and carbonates from ICL dataset [37]) | ||||||
2_BS | 1000 | 3.00 | 21.6 | 21.6 | 21.13 | 7.04 |
2_DS | 1000 | 2.69 | 19.5 | 19.5 | 19.18 | 7.13 |
2_EC | 1000 | 3.31 | 10.9 | 10.9 | 19.90 | 6.01 |
2_KC | 1000 | 3.00 | 12.3 | 12.3 | 18.02 | 6.00 |
Group 3 (tight pore Achimov sandstones [43]) | ||||||
3_A | 600 | 1.2 | 6.5 | 5.8 | 3.15 | 2.63 |
3_B | 600 | 1.2 | 5.3 | 4.4 | 5.05 | 4.2 |
3_C | 600 | 1.2 | 5.8 | 5.3 | 3.75 | 3.13 |
3_D | 600 | 1.2 | 9.9 | 9.7 | 5.3 | 4.42 |
3_E | 600 | 1.2 | 7 | 6.4 | 4.65 | 3.88 |
Group 4 (tight pore Achimov sandstones [43]) | ||||||
4_A | 1400 | 1.2 | 8.9 | 8.1 | 7.15 | 5.95 |
4_B | 1400 | 1.2 | 6.5 | 5.1 | 7.01 | 5.84 |
4_D | 1400 | 1.2 | 10.8 | 10.2 | 7.12 | 5.93 |
Sample Name | k, mD (ICL) (exp.) | k, mD (DHD) | k, mD (DiMP) | k, mD (ICL PNM) | k, mD (ICL DNS) | k, mD (LBM) | Relative Error, % |
---|---|---|---|---|---|---|---|
Group 1 (sandstones from ICL database [37]) | |||||||
1_BS | 1286 | – | – | 1111 | – | 1302 | 1.24% |
1_LV60A | 35,300 | – | – | 27,200 | – | 30,246 | −14.32% |
1_S1 | 1678 | – | – | 1486 | – | 1525 | −9.09% |
1_S2 | 3898 | – | – | 3951 | – | 3741 | −4.02% |
1_S9 | 2224 | – | – | 3640 | – | 2097 | −5.71% |
1_C1 | 1102 | – | – | 556 | – | 1213 | 8.67% |
1_A1 | 7220 | – | – | 8076 | – | 6024 | −16.57% |
Group 2 (select sandstones and carbonates from ICL dataset [37]) | |||||||
2_BS (a) | – | – | – | – | 3595 | 2805 | −22% |
2_DS (b) | – | – | – | – | 3812 | 3673 | −3.6% |
2_EC (c) | – | – | – | – | 221.4 | 313.3 | 41% |
Group 3 (tight pore Achimov sandstones [43]) | |||||||
3_A | – | 0.67 | 0.84 | – | – | 1.14 | 70% |
3_B | – | 1 | 0.87 | – | – | 1.24 | 24% |
3_C | – | 0.32 | 0.66 | – | – | 0.87 | 172% |
3_D | – | 10.2 | 9.38 | – | – | 12.88 | 26% |
3_E | – | 0.68 | 1.28 | – | – | 1.69 | 148% |
Group 4 (tight pore Achimov sandstones [43]) | |||||||
4_A | – | – | 3.05 | – | – | 5.54 | 81% |
4_B | – | – | 1.6 | – | – | 3.03 | 89% |
4_D | – | – | 12.53 | – | – | 16.3 | 30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olhin, A.; Vishnyakov, A. Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method. Appl. Sci. 2023, 13, 9112. https://doi.org/10.3390/app13169112
Olhin A, Vishnyakov A. Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method. Applied Sciences. 2023; 13(16):9112. https://doi.org/10.3390/app13169112
Chicago/Turabian StyleOlhin, Andrey, and Aleksey Vishnyakov. 2023. "Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method" Applied Sciences 13, no. 16: 9112. https://doi.org/10.3390/app13169112
APA StyleOlhin, A., & Vishnyakov, A. (2023). Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method. Applied Sciences, 13(16), 9112. https://doi.org/10.3390/app13169112