Microscopic Pair Potentials and the Physical Properties of the Condensed Phases of Parahydrogen
Abstract
1. Introduction
2. Model and Methodology
3. Results
3.1. Liquid
3.2. Solid
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silvera, I.F. The solid molecular hydrogens in the condensed phase: Fundamentals and static properties. Rev. Mod. Phys. 1980, 52, 393–452. [Google Scholar] [CrossRef]
- Chabal, Y.J.; Patel, C.K.N. Molecular hydrogen in a-Si: H. Rev. Mod. Phys. 1987, 59, 835–844. [Google Scholar] [CrossRef]
- Myers, S.M.; Baskes, M.I.; Birnbaum, H.K.; Corbett, J.W.; DeLeo, G.G.; Estreicher, S.K.; Haller, E.E.; Jena, P.; Johnson, N.M.; Kirchheim, R.; et al. Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 1992, 64, 559–617. [Google Scholar] [CrossRef]
- Mao, H.K.; Hemley, R.J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 1994, 66, 671–692. [Google Scholar] [CrossRef]
- Nellis, W.J.; Ross, M.; Holmes, N.C. Temperature Measurements of Shock-Compressed Liquid Hydrogen: Implications for the Interior of Jupiter. Science 1995, 269, 1249–1252. [Google Scholar] [CrossRef]
- Kohanoff, J. The status of the low-temperature phase diagram of hydrogen at the turn of the century. J. Low. Temp. Phys. 2001, 122, 297–311. [Google Scholar] [CrossRef]
- Guillot, T. The Interiors of Giant Planets: Models and Outstanding Questions. Ann. Rev. Earth Planet. Sci. 2005, 33, 493–530. [Google Scholar] [CrossRef]
- Silvera, I.F.; Cole, J.W. Metallic hydrogen: The most powerful rocket fuel yet to exist. J. Phys. Conf. Ser. 2010, 215, 012194. [Google Scholar] [CrossRef]
- McMahon, J.M.; Morales, M.A.; Pierleoni, C.; Ceperley, D.M. The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 2012, 84, 1607–1653. [Google Scholar] [CrossRef]
- Tozzini, V.; Pellegrini, V. Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 2013, 15, 80–89. [Google Scholar] [CrossRef]
- Silvera, I.F.; Dias, R. Phases of the hydrogen isotopes under pressure: Metallic hydrogen. Adv. Phys. X 2021, 6, 1961607. [Google Scholar] [CrossRef]
- Dharma-wardana, M.W.C.; Perrot, F. Density-functional theory of hydrogen plasmas. Phys. Rev. A 1982, 26, 2096–2104. [Google Scholar] [CrossRef]
- Barbee, T.W.; Cohen, M.L.; Martins, J.L. Theory of high-pressure phases of hydrogen. Phys. Rev. Lett. 1989, 62, 1150–1153. [Google Scholar] [CrossRef] [PubMed]
- Pickard, C.J.; Needs, R.J. Structure of phase III of solid hydrogen. Nat. Phys. 2007, 3, 473–476. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of solid hydrogen at high pressures. Phys. Rev. B 1987, 36, 2092–2106. [Google Scholar] [CrossRef]
- Natoli, V.; Martin, R.M.; Ceperley, D.M. Crystal structure of atomic hydrogen. Phys. Rev. Lett. 1993, 70, 1952–1955. [Google Scholar] [CrossRef]
- Pierleoni, C.; Ceperley, D.M.; Bernu, B.; Magro, W.R. Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation. Phys. Rev. Lett. 1994, 73, 2145–2149. [Google Scholar] [CrossRef]
- Magro, W.R.; Ceperley, D.M.; Pierleoni, C.; Bernu, B. Molecular Dissociation in Hot, Dense Hydrogen. Phys. Rev. Lett. 1996, 76, 1240–1243. [Google Scholar] [CrossRef]
- Hohl, D.; Natoli, V.; Ceperley, D.M.; Martin, R.M. Molecular dynamics in dense hydrogen. Phys. Rev. Lett. 1993, 71, 541–544. [Google Scholar] [CrossRef]
- Kohanoff, J.; Scandolo, S.; Chiarotti, G.L.; Tosatti, E. Solid Molecular Hydrogen: The Broken Symmetry Phase. Phys. Rev. Lett. 1997, 78, 2783–2786. [Google Scholar] [CrossRef]
- Kitamura, H.; Tsuneyuki, S.; Ogitsu, T.; Miyake, T. Quantum distribution of protons in solid molecular hydrogen at megabar pressures. Nature 2000, 404, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Delaney, K.T.; Pierleoni, C.; Ceperley, D.M. Quantum Monte Carlo Simulation of the High-Pressure Molecular-Atomic Crossover in Fluid Hydrogen. Phys. Rev. Lett. 2006, 97, 235702. [Google Scholar] [CrossRef]
- Attaccalite, C.; Sorella, S. Stable Liquid Hydrogen at High Pressure by a Novel Ab Initio Molecular-Dynamics Calculation. Phys. Rev. Lett. 2008, 100, 114501. [Google Scholar] [CrossRef]
- Pierleoni, C.; Morales, M.A.; Rillo, G.; Holzmann, M.; Ceperley, D.M. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 2016, 113, 4953–4957. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, G.; Helled, R.; Sorella, S. Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations. Phys. Rev. Lett. 2018, 120, 025701. [Google Scholar] [CrossRef]
- Diep, P.; Johnson, J.K. An accurate H2–H2 interaction potential from first principles. J. Chem. Phys. 2000, 112, 4465–4473. [Google Scholar] [CrossRef]
- Silvera, I.F.; Goldman, V.V. The isotropic intermolecular potential for H2 and D2 in the solid and gas phases. J. Chem. Phys. 1978, 69, 4209–4213. [Google Scholar] [CrossRef]
- Celli, M.; Colognesi, D.; Zoppi, M. Experimental determination of the translational kinetic energy of liquid and solid hydrogen. Eur. Phys. J. B 2000, 14, 239–244. [Google Scholar] [CrossRef]
- Operetto, F.; Pederiva, F. Diffusion Monte Carlo study of the equation of state of solid para- H2. Phys. Rev. B 2006, 73, 184124. [Google Scholar] [CrossRef]
- Gernoth, K.A.; Lindenau, T.; Ristig, M.L. Screening of particle exchange in quantum Boltzmann liquids. Phys. Rev. B 2007, 75, 174204. [Google Scholar] [CrossRef]
- Boninsegni, M. Quantum statistics and the momentum distribution of liquid parahydrogen. Phys. Rev. B 2009, 79, 174203. [Google Scholar] [CrossRef]
- Omiyinka, T.; Boninsegni, M. Pair potentials and equation of state of solid para-hydrogen to megabar pressure. Phys. Rev. B 2013, 88, 024112. [Google Scholar] [CrossRef]
- Stewart, J.W. Compression of solidified gases to 20,000 kg/cm2 at low temperature. J. Phys. Chem. Solids 1956, 1, 146–158. [Google Scholar] [CrossRef]
- Schnepp, O. One-Phonon Excited States of Solid H2 and D2 in the Ordered Phase. Phys. Rev. A 1970, 2, 2574. [Google Scholar] [CrossRef]
- Driessen, A.; Waal, J.A.; Silvera, I.F. Experimental determination of the equation of state of solid hydrogen and deuterium at high pressures. J. Low. Temp. Phys. 1979, 34, 255–305. [Google Scholar] [CrossRef]
- Dawidowski, J.; Bermejo, F.J.; Ristig, M.L.; Cabrillo, C.; Bennington, S.M. Density dependence of the momentum distributions in liquid para-hydrogen. Phys. Rev. B 2006, 73, 10. [Google Scholar] [CrossRef]
- Celli, M.; Bafile, U.; Cuello, G.J.; Formisano, F.; Guarini, E.; Magli, R.; Neumann, M.; Zoppi, M. Microscopic structure factor of liquid hydrogen by neutron-diffraction measurements. Phys. Rev. B 2005, 71, 014205. [Google Scholar] [CrossRef]
- Norman, M.J.; Watts, R.O.; Buck, U. A spherical potential for hydrogen from solid state and scattering data. J. Chem. Phys. 1984, 81, 3500–3504. [Google Scholar] [CrossRef]
- Moraldi, M. Effective Pair Potential for Solid Molecular Hydrogen at High Pressures. J. Low Temp. Phys. 2012, 168, 275–284. [Google Scholar] [CrossRef]
- Patkowski, K.; Cencek, W.; Jankowski, P.; Szalewicz, K.; Mehl, J.B.; Garberoglio, G.; Harvey, A.H. Potential energy surface for interactions between two hydrogen molecules. J. Chem. Phys. 2008, 129, 094304. [Google Scholar] [CrossRef]
- Mehl, J.B.; Huber, M.L.; Harvey, A.H. Ab Initio Transport Coefficients of Gaseous Hydrogen. Int. J. Thermophys. 2010, 31, 740–755. [Google Scholar] [CrossRef]
- Sindzingre, P.; Ceperley, D.M.; Klein, M.L. Superfluidity in clusters of p-H2 molecules. Phys. Rev. Lett. 1991, 67, 1871–1874. [Google Scholar] [CrossRef]
- Mezzacapo, F.; Boninsegni, M. Classical and quantum physics of hydrogen clusters. J. Phys. Condens. Matter 2009, 21, 164205. [Google Scholar] [CrossRef] [PubMed]
- Boninsegni, M. Computer Simulation Study of Nanoscale Size Parahydrogen Clusters. J. Low Temp. Phys. 2019, 195, 51–59. [Google Scholar] [CrossRef]
- Omiyinka, T.; Boninsegni, M. Enhanced superfluid response of parahydrogen in nanoscale confinement. Phys. Rev. B 2014, 90, 064511. [Google Scholar] [CrossRef]
- Omiyinka, T.; Boninsegni, M. Quasi-one-dimensional parahydrogen in nanopores. Phys. Rev. B 2016, 93, 104501. [Google Scholar] [CrossRef]
- Boninsegni, M.; Pierleoni, C.; Ceperley, D.M. Isotopic shift of helium melting pressure: Path integral Monte Carlo study. Phys. Rev. Lett. 1994, 72, 1854–1857. [Google Scholar] [CrossRef]
- Mezzacapo, F.; Boninsegni, M. Superfluidity and Quantum Melting of p-H2 Clusters. Phys. Rev. Lett. 2006, 97, 045301. [Google Scholar] [CrossRef]
- Mezzacapo, F.; Boninsegni, M. Structure, superfluidity, and quantum melting of hydrogen clusters. Phys. Rev. A 2007, 75, 033201. [Google Scholar] [CrossRef]
- Boninsegni, M.; Prokof’ev, N.; Svistunov, B. Worm Algorithm for Continuous-Space Path Integral Monte Carlo Simulations. Phys. Rev. Lett. 2006, 96, 070601. [Google Scholar] [CrossRef]
- Boninsegni, M.; Prokof’ev, N.V.; Svistunov, B.V. Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations. Phys. Rev. E 2006, 74, 036701. [Google Scholar] [CrossRef] [PubMed]
- Feynman, R.; Hibbs, A. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965; Chapter 10. [Google Scholar]
- Boninsegni, M. Search for superfluidity in supercooled liquid parahydrogen. Phys. Rev. B 2018, 97, 054517. [Google Scholar] [CrossRef]
- Boninsegni, M. Low-temperature phase diagram of condensed para-hydrogen in two dimensions. Phys. Rev. B 2004, 70, 193411. [Google Scholar] [CrossRef]
- Boninsegni, M. Ground State Phase Diagram of Parahydrogen in One Dimension. Phys. Rev. Lett. 2013, 111, 235303. [Google Scholar] [CrossRef]
- Boninsegni, M. Permutation Sampling in Path Integral Monte Carlo. J. Low Temp. Phys. 2005, 141, 27–46. [Google Scholar] [CrossRef]
- Ceperley, D.M. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 1995, 67, 279–355. [Google Scholar] [CrossRef]
- Azuah, R.T.; Stirling, W.R.; Glyde, H.R.; Boninsegni, M.; Sokol, P.E.; Bennington, S.M. Condensate and final-state effects in superfluid 4He. Phys. Rev. B 1997, 56, 14620–14630. [Google Scholar] [CrossRef]
- Zoppi, M.; Colognesi, D.; Celli, M. Density dependence of mean kinetic energy in liquid and solid hydrogen at 19.3 K. Eur. Phys. J. B 2001, 23, 171–178. [Google Scholar] [CrossRef]
- Diallo, S.O.; Pearce, J.V.; Azuah, R.T.; Albergamo, F.; Glyde, H.R. Condensate fraction and atomic kinetic energy of liquid He3-He4 mixtures. Phys. Rev. B 2006, 74, 144503. [Google Scholar] [CrossRef]
- Boninsegni, M. Kinetic energy and momentum distribution of isotopic liquid helium mixtures. J. Chem. Phys. 2018, 148, 102308. [Google Scholar] [CrossRef]
- Fernandez-Alonso, F.; Cabrillo, C.; Fernández-Perea, R.; Bermejo, F.J.; González, M.A.; Mondelli, C.; Farhi, E. Solid para-hydrogen as the paradigmatic quantum crystal: Three observables probed by ultrahigh-resolution neutron spectroscopy. Phys. Rev. B 2012, 86, 144524. [Google Scholar] [CrossRef]
- Axilrod, B.M.; Teller, E. Interaction of the van der Waals Type between Three Atoms. J. Chem. Phys. 1943, 11, 299. [Google Scholar] [CrossRef]
- Moroni, S.; Pederiva, F.; Fantoni, S.; Boninsegni, M. Equation of State of Solid 3He. Phys. Rev. Lett. 2000, 84, 2650–2653. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Boninsegni, M. Ab initio potentials and the equation of state of condensed helium at high pressure. J. Chem. Phys. 2001, 115, 2629–2633. [Google Scholar] [CrossRef]
- Wind, P.; Røeggen, I. Ab initio calculation of three-body interaction in the (H2)3 trimer. Chem. Phys. 1996, 211, 179–189. [Google Scholar] [CrossRef]
- Hinde, R.J. Three-body interactions in solid parahydrogen. Chem. Phys. Lett. 2008, 460, 141–145. [Google Scholar] [CrossRef]
- Anatole von Lilienfeld, O.; Tkatchenko, A. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. J. Chem. Phys. 2010, 132, 234109. [Google Scholar] [CrossRef]
- Huang, Y.; Beran, G.J.O. Reliable prediction of three-body intermolecular interactions using dispersion-corrected second-order Møller-Plesset perturbation theory. J. Chem. Phys. 2015, 143, 044113. [Google Scholar] [CrossRef]
- Ibrahim, A.; Roy, P.N. Three-body potential energy surface for para-hydrogen. J. Chem. Phys. 2022, 156, 044301. [Google Scholar] [CrossRef]
Potential | (K) | Pressure (Bars) |
---|---|---|
Å, K | ||
Silvera–Goldman | 61.7(2) | |
Patkowski et al. | 66.7(2) | |
Experiment [28] | ||
Å, K | ||
Silvera–Goldman | 61.8(2) | |
Buck | 62.6(1) | |
Patkowski et al. | 67.1(2) | 6.9(3) |
Diep–Johnson | 67.0(1) | 20(1) |
Experiment [36] | ~ | ~1 |
Experiment [28] | ||
Å, K | ||
Silvera–Goldman | 64.1(1) | 9.6(4) |
Patkowski et al. | 69.7(2) | 39.1(5) |
Experiment [59] | − | |
Å, K | ||
Silvera–Goldman | 63.0(1) | |
Patkowski et al. | 22.1(5) | |
Experiment [59] |
Potential | (K) | E (K) | Pressure (Bars) |
---|---|---|---|
Silvera–Goldman | |||
Buck | |||
Patkowski et al. | |||
Diep–Johnson | |||
Experiment [34] | |||
Experiment [35] | ~6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Boninsegni, M. Microscopic Pair Potentials and the Physical Properties of the Condensed Phases of Parahydrogen. Appl. Sci. 2023, 13, 270. https://doi.org/10.3390/app13010270
Hu J, Boninsegni M. Microscopic Pair Potentials and the Physical Properties of the Condensed Phases of Parahydrogen. Applied Sciences. 2023; 13(1):270. https://doi.org/10.3390/app13010270
Chicago/Turabian StyleHu, Jieru, and Massimo Boninsegni. 2023. "Microscopic Pair Potentials and the Physical Properties of the Condensed Phases of Parahydrogen" Applied Sciences 13, no. 1: 270. https://doi.org/10.3390/app13010270
APA StyleHu, J., & Boninsegni, M. (2023). Microscopic Pair Potentials and the Physical Properties of the Condensed Phases of Parahydrogen. Applied Sciences, 13(1), 270. https://doi.org/10.3390/app13010270