Next Article in Journal
Key Recovery for Content Protection Using Ternary PUFs Designed with Pre-Formed ReRAM
Next Article in Special Issue
An Elliptic Blending Turbulence Model-Based Scale-Adaptive Simulation Model Applied to Fluid Flows Separated from Curved Surfaces
Previous Article in Journal
Application of MICP in Water Stability and Hydraulic Erosion Control of Phosphogypsum Material in Slope
Previous Article in Special Issue
Computational Evaluation of Shock Wave Interaction with a Liquid Droplet
Article

Numerical Study of Coupled Fluid and Solid Wave Propagation Related to the Cladding Failure of a Nuclear Fuel Rod

1
CEA, DES, IRESNE, DER, SPESI, LP2E, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
2
CEA, DES, IRESNE, Department of Nuclear Technology, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France
3
Aix Marseille Univ., CNRS, Centrale Marseille, LMA UMR7031, F-13453 Marseille, France
*
Author to whom correspondence should be addressed.
Academic Editor: Hoyas Calvo Sergio
Appl. Sci. 2022, 12(4), 1784; https://doi.org/10.3390/app12041784
Received: 19 December 2021 / Revised: 2 February 2022 / Accepted: 4 February 2022 / Published: 9 February 2022
Fuel rod cladding failure in a nuclear reactor produces different phenomena related to vibrations and fluid–structure interaction. The most significant aspect of those phenomena is the creation of a pressure wave at the failure position and its propagation in the coolant fluid flowing around the fuel rod. An accurate understanding of the propagation of the pressure wave around the fuel rod can help us design a method to detect a failure, determine its position, and estimate some of its characteristics with a single and simple sensor, such as a pressure sensor or a piezoelectric acoustic sensor, that can be mounted relatively far from the failure. Such a method can be useful for the monitoring of nuclear fuel rods, where instrumentation possibilities are restricted (because of neutron flux, radiation, high temperature, and available space) as well as for any kind of application involving annular ducts and limited instrumentation possibilities. The current paper is related to the specific application of nuclear fuel rod monitoring. It deals with preliminary numerical simulations that are necessary to know the evolution of a fluid pressure profile along the system containing the rod. They are carried out by finite element methods, using the EUROPLEXUS code. They provide the necessary information about the propagation of pressure waves around the rod to design measurement and signal processing methods as well as properly interpret experimental results from tests in industrial reactors, research reactors, or experimental mock-ups. They also provide some information that could not be experimentally obtained because of the constraints in a nuclear environment. Despite the specific application we show in this article, similar calculation methods, theoretical observations, and results interpretations can be easily adapted to the other mentioned applications. View Full-Text
Keywords: fluid–structure interaction; acoustics; vibration; annular duct; pressure transient; pressure wave fluid–structure interaction; acoustics; vibration; annular duct; pressure transient; pressure wave
Show Figures

Figure 1

MDPI and ACS Style

Julien, T.; Faucher, V.; Pantera, L.; Ricciardi, G.; Sarrouy, E. Numerical Study of Coupled Fluid and Solid Wave Propagation Related to the Cladding Failure of a Nuclear Fuel Rod. Appl. Sci. 2022, 12, 1784. https://doi.org/10.3390/app12041784

AMA Style

Julien T, Faucher V, Pantera L, Ricciardi G, Sarrouy E. Numerical Study of Coupled Fluid and Solid Wave Propagation Related to the Cladding Failure of a Nuclear Fuel Rod. Applied Sciences. 2022; 12(4):1784. https://doi.org/10.3390/app12041784

Chicago/Turabian Style

Julien, Tristan, Vincent Faucher, Laurent Pantera, Guillaume Ricciardi, and Emmanuelle Sarrouy. 2022. "Numerical Study of Coupled Fluid and Solid Wave Propagation Related to the Cladding Failure of a Nuclear Fuel Rod" Applied Sciences 12, no. 4: 1784. https://doi.org/10.3390/app12041784

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop