Comparing the Performance of Pivotless Tracking and Fixed-Type Floating Solar Power Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Song, M.; Shen, Z. The evolution of renewable energy and its impact on carbon reduction in China. Energy 2021, 237, 121639. [Google Scholar] [CrossRef]
- Smirnova, E.; Kot, S.; Kolpak, E.; Shestak, V. Governmental support and renewable energy production: A cross-country review. Energy 2021, 230, 120903. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Z.; Li, R.; Wang, L. Renewable energy and economic growth: New insight from country risks. Energy 2022, 238, 122018. [Google Scholar] [CrossRef]
- Salameh, T.; Sayed, E.T.; Abdelkareem, A.; Olabi, A.G.; Rezk, H. Optimal selection and management of hybrid renewable energy System: Neom city as a case study. Energy Convers. Manag. 2021, 244, 114434. [Google Scholar] [CrossRef]
- Opeyemi, B.M. Path to sustainable energy consumption: The possibility of substituting renewable energy for non-renewable energy. Energy 2021, 228, 120519. [Google Scholar] [CrossRef]
- Sharma, G.D.; Shah, M.I.; Shahzad, U.; Jain, M.; Chopra, R. Exploring the nexus between agriculture and greenhouse gas emissions in BIMSTEC region: The role of renewable energy and human capital as moderators. J. Environ. Manag. 2021, 297, 113316. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manag. 2021, 284, 111999. [Google Scholar] [CrossRef] [PubMed]
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q.; Zhao, J. Assessing energy resilience and its greenhouse effect: A global perspective. Energy Econ. 2021, 104, 105659. [Google Scholar] [CrossRef]
- Chahidi, L.Q.; Fossa, M.; Priarone, A.; Mechaqrane, A. Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate–A case study. Appl. Energy 2021, 282, 116156. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, R.; Karthick, A. Review on the progress of building-applied/integrated photovoltaic system. Environ. Sci. Pollut. Res. 2021, 28, 47689–47724. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Mekhilef, S.; Mubin, M.B.; Tey, K.S. Performances of the adaptive conventional maximum power point tracking algorithms for solar photovoltaic system. Sustain. Energy Technol. Assess. 2022, 53, 102390. [Google Scholar] [CrossRef]
- Prasad, A.R.; Shankar, R.; Patil, C.K.; Karthick, A.; Kumar, A.; Rahim, R. Performance enhancement of solar photovoltaic system for roof top garden. Environ. Sci. Pollut. Res. 2021, 28, 50017–50027. [Google Scholar] [CrossRef]
- Marion, B. Measured and satellite-derived albedo data for estimating bifacial photovoltaic system performance. Sol. Energy 2021, 215, 321–327. [Google Scholar] [CrossRef]
- Plessis, A.A.; Strauss, J.M.; Rix, A.J. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. Appl. Energy 2021, 285, 116395. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasanuzzaman, M.; Rahim, N.A. Effects of various parameters on PV-module power and efficiency. Energy Convers Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Kumar, P.; John, S.S.; Shukla, A.K.; Sudhakar, K.; Arbind, K. Performance analysis of 68W flexible solar PV. J. Energy Res. Environ. Technol. 2015, 2, 227–231. [Google Scholar]
- Sudhakar, K.; Srivastava, T. Energy and energy analysis of 36W solar photovoltaic module. Int. J. Ambient Energy 2013, 2, 31–34. [Google Scholar]
- Kumar, B.S.; Sudhakar, K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Rep. 2015, 1, 184–192. [Google Scholar] [CrossRef]
- Gotmare, J.A.; Prayagi, S.V. Enhancing the performance of photovoltaic panels by stationary cooling. Int. J. Sci. Eng. Technol. 2014, 2, 1465–1468. [Google Scholar]
- Shukla, K.N.; Rangnekar, S.; Sudhakar, K.A. Comparative study of exergetic performance of amorphous and polycrystalline solar PV modules. Int. J. Exergy 2015, 17, 433–455. [Google Scholar] [CrossRef]
- Salamah, T.; Ramahi, A.; Alamara, K.; Juaidi, A.; Abdallah, R.; Abdelkareem, M.A.; Amer, E.; Olabi, A.G. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci. Total Environ. 2022, 827, 154050. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, E.B.; Praveen Kumar, S.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental Investigation of the Effect of a Combination of Active and Passive Cooling Mechanism on the Thermal Characteristics and Efficiency of Solar PV Module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Verma, S.; Mohapatra, S.; Chowdhury, S.; Dwivedi, G. Cooling techniques of the PV module: A review. Mater. Today Proc. 2021, 38, 253–258. [Google Scholar] [CrossRef]
- Moore, S.; Hackett, E.J. The construction of technology and place: Concentrating solar power conflicts in the United States. Energy Res. Soc. Sci. 2016, 11, 67–78. [Google Scholar] [CrossRef]
- Ehtiwesh, I.A.S.; Coelho, M.C.; Sousa, A.C.M. Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew. Sustain. Energy Rev. 2016, 56, 145–155. [Google Scholar] [CrossRef]
- Manente, G.; Rech, S.; Lazzaretto, A. Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems. Renew. Energy 2016, 96, 172–189. [Google Scholar] [CrossRef]
- An, S.; Woo, J. Comparative Economic Analysis of RE100 Implementation Methods in South Korea. Curr. Photovolt. Res. 2020, 10, 62–71. [Google Scholar]
- Hardy, J.; Sandry, L. Anticipating customer-centred zero-carbon energy business models. Nat. Energy 2022, 7, 383–385. [Google Scholar] [CrossRef]
- Chien, F.; Ngo, Q.; Hsu, C.; Chau, K.Y.; Mohsin, M. Assessing the capacity of renewable power production for green energy system: A way forward towards zero carbon electrification. Environ. Sci. Pollut. Res. 2021, 28, 65960–65973. [Google Scholar] [CrossRef]
- Cazzaniga, R.; Rosa-Clot, M. The booming of floating PV. Sol. Energy 2021, 219, 3–10. [Google Scholar] [CrossRef]
- Kwon, O.; Kwon, J.; Jo, H.; Cha, H. The Deduction of Generation Efficiency Coefficient of the Floating PV systems with the Cooling Effect of Water Surface. Korean Inst. Electr. Eng. 2020, 69, 1364–1370. [Google Scholar]
- Kwon, O.; Jo, H.; Cho, Y.; Kwon, J.; Kim, S.; Cha, H. Experimental Verification of the Efficiency Increase of Floating PV with Water Surface Reflection. In Proceedings of the KIEE Summer Conference, Goseong-gun, Republic of Korea, 2–4 July 2019; pp. 1222–1223. [Google Scholar]
- Kwon, T.; Kim, J.; Kim, E.; Hong, S. Effect on Power Generation of Floating Photovoltaic Power System Power by Water Level Change. J. Korean Sol. Energy 2022, 42, 13–21. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Manohar, M.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Nisar, H.; Janjua, A.K.; Hafeez, H.; Shakir, S.; Shahzad, N.; Waqas, A. Thermal and electrical performance of solar floating PV system compared to on-ground PV system-an experimental investigation. Sol. Energy 2022, 241, 231–247. [Google Scholar] [CrossRef]
- Sulaeman, S.; Brown, E.; Quispe-Abad, R.; Muller, N. Floating PV system as an alternative pathway to the amazon dam underproduction. Renew. Sust. Energy. Rev. 2021, 135, 110082. [Google Scholar] [CrossRef]
- Hammoumi, A.E.; Chalh, A.; Allouhi, A.; Motahhir, S.; Ghzizal, A.E.; Derouich, A. Design and construction of a test bench to investigate the potential of floating PV systems. J. Clean. Prod. 2021, 278, 123917. [Google Scholar] [CrossRef]
- Dass Tech. Available online: http://www.dasstech.com/products/solar-inverters/on-grid-residential/dass-3-0i-2/ (accessed on 7 December 2022).
- Davis. Available online: https://www.davisinstruments.com/pages/vantage-pro2 (accessed on 7 December 2022).
- Solaris. Available online: https://www.solaris-shop.com/hanwha-q-cells-q-peak-duo-blk-g5-310-310w-mono-solar-panel/ (accessed on 7 December 2022).
- Ismail, M.A.; Ramanathan, K.; Idris, M.H.; Ananda-Rao, K.; Mazlan, M.; Fairuz, N. Improving the performance of solar panels by the used of dual axis solar tracking system with mirror reflection. J. Phys. Conf. Ser. 2020, 1432, 012060. [Google Scholar] [CrossRef]
- D’Agostino, D.; Minelli, F.; D’Urso, M.; Minichiello, F. Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance. Renew. Energy 2022, 195, 809–824. [Google Scholar] [CrossRef]











| Type | Fixed (kWh) | Tracking (kWh) | Increased Rate (%) | 
|---|---|---|---|
| Total energy output | 2313.30 | 2684.69 | 13.83 | 
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jee, H.; Noh, Y.; Kim, M.; Lee, J. Comparing the Performance of Pivotless Tracking and Fixed-Type Floating Solar Power Systems. Appl. Sci. 2022, 12, 12926. https://doi.org/10.3390/app122412926
Jee H, Noh Y, Kim M, Lee J. Comparing the Performance of Pivotless Tracking and Fixed-Type Floating Solar Power Systems. Applied Sciences. 2022; 12(24):12926. https://doi.org/10.3390/app122412926
Chicago/Turabian StyleJee, Hongsub, Yohan Noh, Minwoo Kim, and Jaehyeong Lee. 2022. "Comparing the Performance of Pivotless Tracking and Fixed-Type Floating Solar Power Systems" Applied Sciences 12, no. 24: 12926. https://doi.org/10.3390/app122412926
APA StyleJee, H., Noh, Y., Kim, M., & Lee, J. (2022). Comparing the Performance of Pivotless Tracking and Fixed-Type Floating Solar Power Systems. Applied Sciences, 12(24), 12926. https://doi.org/10.3390/app122412926
 
        




 
       