Comparative Study on the Temporal and Spatial Evolution of the Ecosystem Service Value of Different Karst Landform Types: A Case Study in Guizhou Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Data Sources and Processing
2.2.2. Classification of Karst Landforms
2.3. Method
2.3.1. ESV Assessment
2.3.2. Extraction of Terrain Feature Data
3. Results
3.1. Study of the ESV in Guizhou Province
3.1.1. Time Series Changes in the ESV in Guizhou Province
3.1.2. Spatial Changes in the ESV in Guizhou Province
3.2. Evolution Characteristics of the ESV in Different Landform Types
3.2.1. Temporal and Spatial Variation in the ESV in Different Landform Types
3.2.2. ESV Terrain Effect in Different Landform Areas
Elevation Effects of the ESV Changes
Slope Effect of the ESV Change
4. Discussion
4.1. General Law of ESV Changes in Karst Landforms
4.2. The Variation in ESV in Different Landform Areas
4.3. Research Features and Enlightenment
- (1)
- Development plans should be formulated in strict accordance with the principle of ecological priority and green development, and green GDP should be incorporated into the performance assessment system of government officials.
- (2)
- The ecological environment construction and protection of pure-karst landscape areas should be strengthened.
- (3)
- The ecological land area and layout of the pure-karst and semi-karst areas should be reasonably increased within an altitude less than or equal to 500 m.
- (4)
- In areas with slopes greater than 25°, all three geomorphic areas should strictly implement the Grain for Green policy.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bera, B.; Bhattacharjee, S.; Sengupta, N.; Shit, P.K.; Adhikary, P.P.; Sengupta, D.; Saha, S. Significant reduction of carbon stocks and changes of ecosystem service valuation of Indian Sundarban. Sci. Rep. 2022, 12, 7809. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Gao, M.X. Spatiotemporal evolution and correlation analysis of ecosystem service values and ecological risk in Binzhou. Acta Ecol. Sin. 2019, 39, 7815–7827. [Google Scholar]
- Li, B.Y.; Chen, N.C.; Wang, Y.C.; Wang, W. Spatio-temporal quantification of the trade-offs and synergies among ecosystem services based on grid-cells: A case study of Guanzhong Basin, NW China. Ecol. Indic. 2018, 94, 246–253. [Google Scholar] [CrossRef]
- Liu, Z.T.; Wang, S.J.; Fang, C.L. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Geogr. Sin. 2021, 76, 2797–2813. [Google Scholar]
- Su, M.N.; Peng, B.R. Integrating values of ecosystem services into decision making in coastal management in Xiamen. Ocean. Coast. Manag. 2018, 207, 104590. [Google Scholar] [CrossRef]
- Ho, H.L.; Nguyen, T.H.D.; Vo, T.T.; Yoshihisa, S. An analytical approach in accounting for social values of ecosystem services in a Ramsar site: A case study in the Mekong Delta, Vietnam. Ecol. Indic. 2018, 89, 118–129. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hindsley, P.; Yoskowitz, D. Global change—Local values: Assessing tradeoffs for coastal ecosystem services in the face of sea level rise. Glob. Environ. Change 2018, 61, 102039. [Google Scholar] [CrossRef]
- Deng, Y.J.; Hou, M.Y.; Xie, Y.F.; Gao, Q.; Yao, S.B.; Gong, Z.W.; Lu, Y.N.; Jia, L.; Li, Y.Y. Impact of the Grain for Green Project on the temporal and spatial evolution of ecosystem service value in northern Shaanxi. Acta Ecol. Sin. 2020, 40, 6597–6612. [Google Scholar]
- Zhou, W.H.; Shi, Y.H.; Pan, L.; Fu, T.; Zheng, L.Y. Evaluation of Final Service Value of Donghu Lake Wetland Ecosystem in Wuhan City in 2017. Wetl. Sci. 2019, 17, 318–323. [Google Scholar]
- Fang, L.L.; Xu, D.H.; Wang, L.C.; Niu, Z.G.; Zhang, M. The study of ecosystem services and the comparison of trade-off and synergy in Yangtze River Basin and Yellow River Basin. Geogr. Res. 2021, 40, 821–838. [Google Scholar]
- Huang, M.Y.; Fang, B.; Yue, W.Z.; Feng, S.R. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995–2017. Geogr. Res. 2019, 38, 2790–2803. [Google Scholar]
- Zheng, Z.M.; Fu, B.J.; Hu, H.T.; Sun, G. A method to identify the variable ecosystem services relationship across time: A case study on Yanhe Basin, China. Landsc. Ecol. 2014, 29, 1689–1696. [Google Scholar] [CrossRef]
- Yin, N.; Wang, S.; Liu, Y.X. Ecosystem service value assessment: Research progress and prospects. Chin. J. Ecol. 2021, 40, 233–244. [Google Scholar]
- Bhaskar, S.; Ye, Q.H.; Nitesh, K. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 318311. [Google Scholar]
- Sannigrahi, S.; Chakraborti, S.; Joshi, P.K.; Keesstra, S.; Paul, S.K.; Jha, S.; Dang, K.B. Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. J. Environ. Manag. 2019, 244, 208–227. [Google Scholar] [CrossRef]
- Friess, D.A.; Yando, E.S.; Wong, L.; Bhatia, N. Indicators of scientific value: An under-recognised ecosystem service of coastal and marine habitats. Ecol. Indic. 2020, 113, 106255. [Google Scholar] [CrossRef]
- Sun, C.Z.; Wang, Y.Y.; Zou, W. The marine ecosystem services values for China based on the emergy analysis method. Ocean. Coast. Manag. 2018, 161, 66–73. [Google Scholar] [CrossRef]
- Ke, X.L.; Zhou, Q.S.; Zuo, C.C.; Tang, L.P.; Turner, A. Spatial impact of cropland supplement policy on regional ecosystem services under urban expansion circumstance: A case study of Hubei Province, China. J. Land Use Sci. 2020, 15, 673–689. [Google Scholar] [CrossRef]
- Estoque, R.C.; Myint, S.W.; Wang, C.Y.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Change Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef]
- Wen, L.; Song, J.; Zhang, H.C.; Zhang, X.F.; Wang, F.G.; Ha, S.N.; Wang, L.X. Dynamics of ecosystem service value in Ulan buh Desert from 1990 to 2018. J. Arid. Land Resour. Environ. 2020, 34, 57–64. [Google Scholar]
- Zhang, M.; Dilinuer, A.J. Evaluation of ecosystem service value of constructed wetland on the west bank of the Bosten Lake. Trans. Oceanol. Limnol. 2021, 43, 169–174. [Google Scholar]
- Pan, N.H.; Guan, Q.Y.; Wang, Q.Z.; Sun, Y.F.; Li, H.C.; Ma, Y.R. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Guo, H.Y.; Wang, Y.R.; Lu, Q.; Zhou, J.X.; Wei, Q.Z. Assessment on the eco-service value in karst rocky desert: A case study in Jinsha County. Carsologica Sin. 2013, 32, 211–217, 224. [Google Scholar]
- Zhou, B.H.; Cao, J.J.; Zhu, C.P.; Jin, B. Valuation of wetland ecosystem services along the Yangtze River in Anqing, Anhui Province. Geogr. Res. 2011, 30, 2296–2304. [Google Scholar]
- Han, P.; Si, J.; Wang, Y.G. Contrastive Analysis of Valuation Methods of Ecosystem Services Value: A Case Study of Zhifanggou Watershed in a Hilly and Gully Region of Loess Plateau. J. Basic Sci. Eng. 2009, 17, 102–112. [Google Scholar]
- Luo, G.J.; Wang, S.J.; Li, Y.B.; Bai, X.Y. Spatio-temporal dynamics and ecological service function assessment of slope farmland in Karst areas of Guizhou province, China. Trans. Chin. Soc. Agric. Eng. 2014, 30, 233–243. [Google Scholar]
- Zhao, N.; Wang, H.; Zhong, J.Q.; Sun, D.Q. Assessment of Recreational and Cultural Ecosystem Services Value of Islands. Land 2022, 11, 205. [Google Scholar] [CrossRef]
- Petway, J.R.; Lin, Y.P.; Wunderlich, R.F. A Place-Based Approach to Agricultural Nonmaterial Intangible Cultural Ecosystem Service Values. Sustainability 2020, 12, 699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.Y.; Geng, W.L.; Yang, D.; Li, Y.Y.; Zhang, Y.; Qin, M.Z. Spatial-temporal evolution of land use and ecosystem service value in the Lower Reaches of the Yellow River Region. Trans. Chin. Soc. Agric. Eng. 2020, 36, 277–288. [Google Scholar]
- Liu, X.N.; Liu, C.L.; Chen, L.; Pei, X.; Qiao, Q. Gradient effects and ecological zoning of ecosystem services in transition zone of Beijing Bay. Trans. Chin. Soc. Agric. Eng. 2020, 36, 276–285. [Google Scholar]
- Chen, Y.; Li, J.F.; Xu, J. The Impact of Socio-economic Factors on Ecological Service Value in Hubei Province: A Geographically Weighted Regression Approach. China Land Sci. 2015, 29, 89–96. [Google Scholar]
- Zeng, J.; Li, J.F.; Yao, X.W. Spatio-temporal dynamics of ecosystem service value in Wuhan Urban Agglomeration. Chin. J. Appl. Ecol. 2014, 25, 883–891. [Google Scholar]
- Swanson, F.J.; Zhang, L.F. Effects of landform on ecosystem model and function. Prog. Geogr. 1990, 1, 6–10. [Google Scholar]
- Wang, B.X.; Cheng, W.M.; Song, K.Y.; Li, H. Preliminary study on eco⁃geomorphology research dynamic: The interdisciplinary science of geomorphology and ecosystem ecology. Acta Ecol. Sin. 2022, 42, 1–15. [Google Scholar]
- Pang, G.W. Vegetation Coverage in Different Landforms of Shaanxi Province: Spatial and Temporal Variations and Influencing Factors. J. Yangtze River Sci. Res. Inst. 2021, 38, 51–58. [Google Scholar]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas. J. Geogr. Sci. 2019, 29, 271–286. [Google Scholar] [CrossRef] [Green Version]
- He, W.C.; Zhao, S.M.; Cheng, W.M. Analysis of land cover change on basic geomorphic types in Shanxi Province. J. Geo-Inf. Sci. 2016, 18, 210–219. [Google Scholar]
- Song, X.W.; Gao, Y.; Wen, X.F.; Guo, D.L.; Yu, G.D.; He, N.P.; Zhang, J.Z. Carbon sequestration potential and its eco-service function in the karst area, China. J. Geogr. Sci. 2017, 27, 967–980. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.J.; An, Y.L.; Ma, S.B.; Zhao, Y.; An, J.K.; An, H.F. Landscape ecological quality of different lithological regions in karst Mountains: A case study in the Luodian county of Guizhou Province. Carsologica Sin. 2017, 36, 454–462. [Google Scholar]
- Han, H.Q.; Su, Z.H. Research progress and prospects of karst ecosystem services. Carsologica Sin. 2017, 36, 352–358. [Google Scholar]
- Feng, Q.; Zhou, Z.F.; Chen, Q.; Zhu, C.L. Spatial⁃temporal evolution research of ecosystem service value in ecologically vulnerable karst regions under the Perspective of poverty Alleviation relocation. Acta Ecol. Sin. 2022, 42, 1–10. [Google Scholar]
- He, X. Study on the evolution of ecological security in Karst area based on the threshold of ecosystem services. Sci. Geogr. Sin. 2021, 9, 2021–2030. [Google Scholar]
- Xue, B.; Xiao, X.; Li, C.H.; Li, J.Z. A spatial analysis based evaluation of forestry ecosystem service value in Guizhou province. J. Guizhou Norm. Univ. (Nat. Sci.) 2019, 37, 37–44. [Google Scholar]
- Hu, F.; An, Y.L.; Xu, J. Preliminary discussion on concept and landscape features of “Semi-Karst”: A case study of Guizhou province. Geogr. Res. 2015, 34, 1569–1580. [Google Scholar]
- Li, Y.H. The evolution of implication of karst and its environmental protection. Carsologica Sin. 2000, 3, 64–71. [Google Scholar]
- An, Y.L.; Lv, T.; Xiong, K.N.; Zhou, Z.F. The study to karst-desertification in Guizhou with “3S”. In Proceedings of the 1st Symposium of Chinese Soil and Water Conservation Monitoring, Guangzhou, China, 19–20 December 2001. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 3, 189–196. [Google Scholar]
- Jiang, H.; Wu, Q. Ecological Service Value Evaluation and Temporal-Spatial Evolution Characteristics in Jiangsu Province Based on LUCC. Resour. Environ. Yangtze Basin 2021, 30, 2712–2725. [Google Scholar]
- Wu, C.Y.; Chen, B.W.; Huang, X.J.; Wei, Y.H.D. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Feng, Z.M.; Tang, Y.; Yang, Y.Z.; Zhang, D. The Relief Degree of Land Surface in China and Its Correlation with Population Distribution. Acta Geogr. Sin. 2007, 10, 1073–1082. [Google Scholar]
- Tan, W.Y.; Zhou, Z.F.; Zhu, C.L.; Ma, G.X. Topographic Relief and Its Influence on Soil Erosion Sensitivity in Karst Mountain Area—Taking Libo County, Guizhou Province as an Example. Bull. Soil Water Conserv. 2019, 39, 77–83. [Google Scholar]
- Wei, Y.; Li, R.T.; Ma, X.E. Research on cultivated land protection and sustainable utilization in karst ecologically fragile region: A Case study of Weining County. Rural. Econ. Sci.-Technol. 2016, 27, 7–9. [Google Scholar]
- Li, X.D. Dynamic relationship and coordination degree between urbanization level and cultivated land area in Guizhou. Popul. Soc. 2011, 27, 64–69. [Google Scholar]
- Pan, H.L.; Li, M.H.; Cai, X.H.; Wu, J.; Du, Z.; Liu, X.L. Responses of growth and ecophysiology of plants to altitude. Ecol. Environ. Sci. 2009, 18, 722–730. [Google Scholar]
- Ma, S.B.; An, Y.L.; Yang, G.B. Analysis of Vegetable NDVI Variation on Various Lithology in Karst Area Based on GIS. Res. Soil Water Conserv. 2017, 24, 202–206+212. [Google Scholar]
- Anonymous. The Connotation, Evaluation and its significance of Ecological Services. In Proceedings of the Second Advanced Seminar on Ecological Compensation Mechanism Construction and Policy Design, Urumqi, China, 29 July 2008. [Google Scholar]
Ecosystem Services | Cropland | Forest | Shrubland | Grassland | Water | Barren Land | |
---|---|---|---|---|---|---|---|
Provisioning services | Food production | 144.29 | 42.81 | 28.05 | 56.09 | 118.09 | 0.00 |
Raw material production | 47.60 | 97.42 | 63.47 | 82.66 | 33.95 | 0.00 | |
Water resource provision | −94.84 | 50.19 | 32.47 | 45.76 | 1223.67 | 0.00 | |
Regulating services | Gas regulation | 115.13 | 320.31 | 208.13 | 290.79 | 113.66 | 2.95 |
Climate regulation | 60.89 | 959.45 | 624.38 | 769.04 | 338.02 | 0.00 | |
Environment purification | 17.34 | 284.88 | 188.94 | 253.89 | 819.22 | 14.76 | |
Water regulation | 130.26 | 699.66 | 494.49 | 563.86 | 15,091.44 | 4.43 | |
Supporting services | Soil conservation | 114.40 | 391.16 | 253.89 | 354.26 | 137.28 | 2.95 |
Nutrient cycle maintenance | 20.30 | 29.52 | 19.19 | 26.57 | 10.33 | 0.00 | |
Biodiversity maintenance | 22.14 | 355.74 | 231.74 | 321.79 | 376.40 | 2.95 | |
Cultural services | Aesthetic landform supply | 9.96 | 156.46 | 101.85 | 141.70 | 278.98 | 1.48 |
Classification | Elevation (m) | Area Proportion (%) | Slope (°) | Area Proportion (%) |
---|---|---|---|---|
Ⅰ | ≤500 | 6.18 | ≤6 | 10.43 |
Ⅱ | (500~800] | 21.87 | (6~15] | 29.99 |
Ⅲ | (800~1100] | 29.43 | (15~25] | 33.19 |
Ⅳ | (1100~1400] | 22.85 | (25~35] | 18.20 |
Ⅴ | (1400~1700] | 9.67 | (35~45] | 6.32 |
Ⅵ | >1700 | 9.99 | >45 | 1.87 |
Year | Cropland | Forest | Shrubland | Grassland | Water | Barren Land | Total ESV |
---|---|---|---|---|---|---|---|
1985 | 3336.70 | 35,096.13 | 2302.89 | 1439.75 | 572.43 | 0.00 | 42,747.91 |
1990 | 3345.62 | 35,335.18 | 2074.76 | 1478.10 | 588.42 | 0.00 | 42,822.08 |
1995 | 3394.50 | 35,913.16 | 1737.04 | 1149.51 | 669.89 | 0.00 | 42,864.11 |
2000 | 3405.01 | 35,638.92 | 1842.42 | 1159.57 | 789.28 | 0.00 | 42,835.20 |
2005 | 3562.80 | 34,884.21 | 1830.91 | 1013.05 | 804.52 | 0.00 | 42,095.49 |
2010 | 3598.08 | 35,068.48 | 1628.81 | 845.77 | 1064.16 | 0.00 | 42,205.29 |
2015 | 3619.06 | 35,398.99 | 1334.50 | 723.38 | 1197.32 | 0.00 | 42,273.25 |
2020 | 3452.19 | 36,612.32 | 1113.09 | 687.27 | 1268.39 | 0.01 | 43,133.26 |
Landform Type | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|---|---|
Pure-karst | 16,813.80 | 16,843.23 | 16,788.89 | 16,718.96 | 16,433.59 | 16,348.35 | 16,328.07 | 16,691.97 |
Semi-karst | 7457.10 | 7435.42 | 7430.28 | 7473.36 | 7404.59 | 7397.36 | 7527.33 | 7824.02 |
Non-karst | 18,477.01 | 18,543.43 | 18,644.94 | 18,642.87 | 18,257.30 | 18,459.58 | 18,417.84 | 18,617.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Zhao, C.; Huang, H. Comparative Study on the Temporal and Spatial Evolution of the Ecosystem Service Value of Different Karst Landform Types: A Case Study in Guizhou Province, China. Appl. Sci. 2022, 12, 12801. https://doi.org/10.3390/app122412801
Lu Q, Zhao C, Huang H. Comparative Study on the Temporal and Spatial Evolution of the Ecosystem Service Value of Different Karst Landform Types: A Case Study in Guizhou Province, China. Applied Sciences. 2022; 12(24):12801. https://doi.org/10.3390/app122412801
Chicago/Turabian StyleLu, Qingping, Cuiwei Zhao, and Huiyu Huang. 2022. "Comparative Study on the Temporal and Spatial Evolution of the Ecosystem Service Value of Different Karst Landform Types: A Case Study in Guizhou Province, China" Applied Sciences 12, no. 24: 12801. https://doi.org/10.3390/app122412801
APA StyleLu, Q., Zhao, C., & Huang, H. (2022). Comparative Study on the Temporal and Spatial Evolution of the Ecosystem Service Value of Different Karst Landform Types: A Case Study in Guizhou Province, China. Applied Sciences, 12(24), 12801. https://doi.org/10.3390/app122412801