Toxic Elements Behavior during Plasma Treatment for Waste Collected from Power Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Analysis Methods
2.3. Model Description
2.4. Application of the Code to the Waste
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Malack, M.H.; Bukhari, A.A.; Al-Amoudi, O.S.; Al-Muhanna, H.H.; Zaidi, T.H. Characteristics of Fly ash Produced at Power and Water Desalination Plants Firing Fuel Oil. Int. J. Environ. Res. 2013, 7, 455–466. [Google Scholar]
- Bulewicz, E.M.; Evans, D.G.; Padley, P.J. Effect of metallic additives on soot formation processes in flames. Symp. Int. Combust. 1975, 15, 1461–1470. [Google Scholar]
- Elsevier; Feldman, N. Control of Residual Fuel Oil Particulate Emissions by Additives. In Proceedings of the 19th International Symposium on Combustion, Haifa, Israel, 8–13 August 1982; The Combustion Institute: Pittsburgh, PA, USA, 1982; pp. 1387–1393. [Google Scholar] [CrossRef]
- Korniejenko, K.; Halyag, N.; Mucsi, G. Fly ash as a raw material for geopolymerisation–chemical composition and physical properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 12002. [Google Scholar] [CrossRef]
- Barabanshchikov, Y.; Usanova, K. Influence of Silica Fume on High-Calcium Fly Ash Expansion during Hydration. Materials 2022, 15, 3544. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk, K.; Kordylewski, W.; Zacharczuk, W. Modification of fly-ash by vitrification. Arch. Combust. 2003, 23, 21–30. [Google Scholar]
- Tzeng, C.C.; Kuo, Y.Y.; Huang, T.F.; Lin, D.L.; Yu, Y.J. Treatment of radioactive waste by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 1998, 58, 207–220. [Google Scholar] [CrossRef]
- Tan, Y. Feasibility Study on Solid Waste to Energy Technological Aspects; Fung Institute: Berkeley, CA, USA, 15 April 2013. [Google Scholar]
- Ghiloufi, I. Electronic Waste Treatment by Thermal Plasma, E-Waste: Management, Types and Challenges Book; Nova Science Publishers: Hauppauge, NY, USA, 1 April 2012; ISBN 978-1-61942-217-9. Available online: www.novapublishers.com (accessed on 1 April 2012).
- Ghiloufi, I. Simulation of radioelement volatility during the vitrification of radioactive wastes by arc plasma. J. Hazard. Mater. 2009, 163, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Badie, J.M.; Chen, X.; Flamant, G. Dynamics of complex chemical system vaporization at high temperature. Application to the vitrification of fly ashes by thermal plasma. Chem. Eng. Sci. 1997, 52, 4381–4391. [Google Scholar]
- Al-Mayman, S.; AlShunaifi, I.; Albeladi, A.; Ghiloufi, I.; Binjuwair, S. Treatment of fly ash from power plants using thermal plasma. Beilstein J. Nanotechnol. 2017, 8, 1043–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiloufi, I.; Girold, C. Optical Emission Spectroscopy Measurements and Simulation of Radioelement Volatility During Radioactive Waste Treatment by Plasma. Plasma Chem. Plasma Process. 2011, 31, 109–125. [Google Scholar] [CrossRef]
- Ghiloufi, I. Modeling of Chemical System Vaporization at High Temperatures: Application to the Vitrification of Fly Ashes by Plasma. High Temp. Mater. Process. 2008, 12, 1–10. [Google Scholar] [CrossRef]
- Ghiloufi, I. Study of 239Pu, 144Ce and 90Sr Behavior during Radioactive Wastes Treatment by Thermal Plasma Technology. Plasma Chem. Plasma Process. 2009, 29, 321–331. [Google Scholar] [CrossRef]
- Ghiloufi, I.; Amouroux, J. Electrolysis Effects on the Cesium Volatility during Thermal Plasma Vitrification of Radioactive Wastes. High Temp. Mater. Processes 2010, 14, 71–84. [Google Scholar] [CrossRef]
- Eriksson, G.; Rosen, E. Thermodynamic studies of high temperature equilibria. J. Chem. Scr. 1973, 4, 193–194. [Google Scholar]
- Pichelin, G.; Rouanet, A. Predictive modelling of high-temperature chemical system vaporization under atmospheric pressure. Chem. Eng. Sci. 1991, 46, 1635–1649. [Google Scholar] [CrossRef]
- Ghiloufi, I.; Baronnet, J.M. Simulation of heavy metals volatility during the vitrification of fly ashes by thermal plasma. High Temp. Mater. Process. 2006, 10, 117–139. [Google Scholar] [CrossRef]
- Ghiloufi, I. Modeling and Simulation of Chemical System Vaporization at High Temperatures: Application to the Vitrification of Fly Ashes and Radioactive Wastes by Thermal Plasma, Heat and Mass Transfer—Modeling and Simulation Book; Intech Open Access Publisher: London, UK, 2011; ISBN 978-953-308-79-0. Available online: www.intechweb.org (accessed on 2 September 2011).
Element | Na | Mg | Rh | Al | Ti | K | Ca | Ba | Ni | Si | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mole Numbers | 0.074 | 0.78 | 0.023 | 0.79 | 0.013 | 0.84 | 0.741 | 0.265 | 0.024 | 0.074 | 0.196 | 0.262 |
Element | V | Ni | Fe | Mg | Na | Ca | Al | Mo | Ba | Zn |
---|---|---|---|---|---|---|---|---|---|---|
C (mg/kg) | 5663 | 2420.2 | 2027 | 1917.4 | 587.4 | 386.5 | 135.5 | 51.5 | 33.4 | 22.8 |
Element | Cr | Pb | Mn | Sr | Ti | Cu | Co | K | Ga | As |
C (mg/kg) | 14.7 | 11.6 | 11.2 | 5.7 | 5.2 | 4.9 | 4.7 | 3.6 | 3.3 | 2.8 |
Element | Na | Mg | Al | K | Ca | Ti | V | Cr | Fe | Ni | Cu | Zn | Mo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (mg/kg) | 1st Cycle | 892.3 | 2449 | 585.6 | 109.4 | 878 | 72.1 | 5642 | 143.1 | 2280 | 2032 | 612.8 | 79.3 | 85.9 |
2nd Cycle | 824.7 | 2505 | 696.1 | 125.2 | 381 | 65.8 | 6457 | 109.5 | 2569 | 2039 | 1006.2 | 93.8 | 79.6 | |
3rd Cycle | 1032. | 3064 | 427.6 | 104.7 | ND | 19.5 | 7358 | 123.6 | 2499 | 2561 | 1835.4 | 123.4 | 128 |
Element | Mn | Co | Ba | La | Ga | Se | Sr | Zr | Ag | Cd | Sn | Ce | Pb | As | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (mg/kg) | 1st Cycle | 27.3 | 6.1 | 58.0 | 3.6 | 2.9 | 4.0 | 10.5 | 4.0 | 19.8 | 1.3 | 7.3 | 1.3 | 12.7 | 1.1 |
2nd Cycle | 21.7 | 6.1 | 59.2 | 4.6 | 3.6 | 4.6 | 11.1 | 1.6 | 13.6 | 1.4 | 8.1 | 2.7 | 12.4 | 1.2 | |
3rd Cycle | 29.0 | 7.6 | 88.3 | 5.2 | 3.9 | 1.8 | 16.6 | 4.2 | 42.4 | 1.3 | 18.5 | 3.1 | 18.46 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlShunaifi, I.; Ghiloufi, I.; Albeladi, A.; Alharbi, A. Toxic Elements Behavior during Plasma Treatment for Waste Collected from Power Plants. Appl. Sci. 2022, 12, 6564. https://doi.org/10.3390/app12136564
AlShunaifi I, Ghiloufi I, Albeladi A, Alharbi A. Toxic Elements Behavior during Plasma Treatment for Waste Collected from Power Plants. Applied Sciences. 2022; 12(13):6564. https://doi.org/10.3390/app12136564
Chicago/Turabian StyleAlShunaifi, Ibrahim, Imed Ghiloufi, Abdullah Albeladi, and Ahmed Alharbi. 2022. "Toxic Elements Behavior during Plasma Treatment for Waste Collected from Power Plants" Applied Sciences 12, no. 13: 6564. https://doi.org/10.3390/app12136564
APA StyleAlShunaifi, I., Ghiloufi, I., Albeladi, A., & Alharbi, A. (2022). Toxic Elements Behavior during Plasma Treatment for Waste Collected from Power Plants. Applied Sciences, 12(13), 6564. https://doi.org/10.3390/app12136564