Supercontinuum Induced by Filamentation of Bessel-Gaussian and Laguerre-Gaussian Beams in Water
Abstract
:1. Introduction
2. Femtosecond Laser Filamentation and SC Generation in Water
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Leach, J.; Yao, E.; Padgett, M.J. Observation of the vortex structure of a non-integer vortex beam. New J. Phys. 2004, 6, 71. [Google Scholar] [CrossRef]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259. [Google Scholar] [CrossRef]
- Oemrawsingh, S.S.R.; Ma, X.; Voigt, D.; Aiello, A.; Eliel, E.T.; Woerdman, J.P. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett. 2005, 95, 240501. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Friese, M.E.J.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 1995, 75, 826. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Li, N.; Su, H.; Li, W.; Hu, H. A review of optically induced rotation. Front. Inform. Technol. Electron. Eng. 2022, 23, 171–185. [Google Scholar] [CrossRef]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810. [Google Scholar] [CrossRef]
- Paterson, L.; MacDonald, M.P.; Arlt, J.; Sibbett, W.; Bryant, P.E.; Dholakia, K. Controlled rotation of optically trapped microscopic particles. Science 2001, 292, 912. [Google Scholar] [CrossRef]
- Tao, S.H.; Yuan, X.C.; Lin, J.; Peng, X.; Niu, H.B. Fractional optical vortex beam induced rotation of particles. Opt. Express 2005, 13, 7726–7731. [Google Scholar] [CrossRef]
- Li, M.; Yan, S.; Yao, B.; Liang, Y.; Lei, M.; Yang, Y. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization. Phys. Lett. A 2016, 380, 311–315. [Google Scholar] [CrossRef]
- Lehmuskero, A.; Li, Y.; Johansson, P.; Käll, M. Plasmonic particles set into fast orbital motion by an optical vortex beam. Opt. Express 2014, 22, 4349–4356. [Google Scholar] [CrossRef] [Green Version]
- Andrade, U.M.S.; Garcia, A.M.; Rocha, M.S. Bessel beam optical tweezers for manipulating superparamagnetic beads. Appl. Opt. 2021, 60, 3422–3429. [Google Scholar] [CrossRef]
- Tsarukyan, L.; Badalyan, A.; Hovsepyan, R.; Drampyan, R. Bessel beam approach for photovoltaic trapping of micro- and nanoparticles on Fe-doped lithium niobate crystal. Opt. Laser Technol. 2021, 139, 106949. [Google Scholar] [CrossRef]
- Torner, L.; Torres, J.P.; Carrasco, S. Digital spiral imaging. Opt. Express 2005, 13, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Zhao, C.; Cai, Y.; Yang, Y. Partially coherent vortex beams: Fundamentals and applications. Sci. China Phys. Mech. Astron. 2021, 64, 224201. [Google Scholar] [CrossRef]
- Balasubramaniam, G.M.; Biton, N.; Arnon, S. Imaging through diffuse media using multi-mode vortex beams and deep learning. Sci. Rep. 2022, 12, 1561. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Vallone, G.; D’Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-space quantum key distribution by rotation invariant twisted photons. Phys. Rev. Lett. 2014, 113, 060503. [Google Scholar] [CrossRef] [Green Version]
- Molina-Terriza, G.; Vaziri, A.; Řeháček, J.; Hradil, Z.; Zeilinger, A. Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 2004, 92, 167903. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.K.; Wang, F.X.; Liu, J.; Chen, W.; Han, Z.F.; Forbes, A.; Wang, J. High-Dimensional Quantum Cryptography with Hybrid Orbital-Angular-Momentum States through 25 km of Ring-Core Fiber: A Proof-of-Concept Demonstration. Phys. Rev. Appl. 2021, 15, 064034. [Google Scholar] [CrossRef]
- Chen, B.; Wei, Y.; Zhao, T.; Liu, S.; Su, R.; Yao, B.; Yu, Y.; Liu, J.; Wang, X. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 2021, 16, 302–307. [Google Scholar] [CrossRef]
- Oosterbeek, R.N.; Ashforth, S.; Bodley, O.; Simpson, M.C. Measuring the ablation threshold fluence in femtosecond laser micromachining with vortex and Bessel pulses. Opt. Express 2018, 26, 34558–34568. [Google Scholar] [CrossRef]
- Yu, X.; Trallero-Herrero, C.A.; Lei, S. Materials processing with superposed Bessel beams. Appl. Surf. Sci. 2016, 360, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.; Moreno, E.; Rudenko, A.; Faure, N.; Sedao, X.; Mauclair, C.; Colombier, J.P.; Stoian, R. Super-efficient drilling of metals with ultrafast non diffractive laser beams. Sci. Rep. 2022, 12, 2074. [Google Scholar] [CrossRef]
- Šlevas, P.; Orlov, S.; Nacius, E.; Ulčinas, O. Azimuthally modulated axicon vortical beams for laser microprocessing. Opt. Commun. 2022, 505, 127509. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Kolesik, M.; Tochitsky, S.; Moloney, J.V. Generation of long homogeneous plasma channels with high power long-wave IR pulsed Bessel beams. Opt. Lett. 2021, 46, 5457–5460. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Song, X.; Lin, J. Flexible manipulation of the onset and terminal positions of femtosecond laser filamentation in fused silica via controlling beam profile before axicon. Opt. Commun. 2022, 516, 128262. [Google Scholar] [CrossRef]
- Lü, J.Q.; Cheng, T.Y.; Wang, W.Y.; Guo, J.X.; Li, J.S.; Liu, S. Analysis of the extension of optical filament in air based on phase-nested laser beam. Opt. Commun. 2022, 519, 128244. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Song, X.; Guo, K.; Lin, J. Multi-dimensional control of femtosecond laser filaments by inserting a wedge plate in the forced focusing region. Phys. Plasmas 2022, 29, 012301. [Google Scholar] [CrossRef]
- Davino, M.; Summers, A.; Saule, T.; Tross, J.; McManus, E.; Davis, B.; Trallero-Herrero, C. Higher-order harmonic generation and strong field ionization with Bessel–Gauss beams in a thin jet geometry. J. Opt. Soc. Am. B 2021, 38, 2194. [Google Scholar] [CrossRef]
- Dota, K.; Pathak, A.; Dharmadhikari, J.A.; Mathur, D.; Dharmadhikari, A.K. Femtosecond laser filamentation in condensed media with Bessel beams. Phys. Rev. A 2012, 86, 023808. [Google Scholar] [CrossRef]
- Ju, L.B.; Huang, T.W.; Xiao, K.D.; Wu, G.Z.; Yang, S.L.; Li, R.; Yang, Y.C.; Long, T.Y.; Zhang, H.; Wu, S.Z. Controlling multiple filaments by relativistic optical vortex beams in plasmas. Phys. Rev. E 2016, 94, 033202. [Google Scholar] [CrossRef] [PubMed]
- Fibich, G.; Gavish, N. Theory of singular vortex solutions of the nonlinear Schrödinger equation. Phys. D 2008, 237, 2696–2730. [Google Scholar] [CrossRef] [Green Version]
- Fibich, G.; Gavish, N. Critical power of collapsing vortices. Phys. Rev. A 2008, 77, 045803. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, D.; Chang, J.; Xi, T.; Hao, Z. Helical filaments array generated by femtosecond vortex beams with lens array in air. Results Phys. 2021, 26, 104334. [Google Scholar] [CrossRef]
- Miller, J.K.; Tsvetkov, D.; Terekhov, P.; Litchinitser, N.M.; Dai, K.; Free, J.; Johnson, E.G. Spatio-temporal controlled filamentation using higher order Bessel-Gaussian beams integrated in time. Opt. Express 2021, 29, 19362. [Google Scholar] [CrossRef]
- Jukna, V.; Milián, C.; Xie, C.; Itina, T.; Dudley, J.; Courvoisier, F.; Couairon, A. Filamentation with nonlinear Bessel vortices. Opt. Express 2014, 22, 25410–25425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, Y.; Lin, S.; Chang, M.; Yu, M.; Wang, Y.; Chen, A.; Jiang, Y.; Li, S.; Jin, M. Testing the coherence of supercontinuum generated by optical vortex beam in water. J. Phys. B 2021, 54, 165401. [Google Scholar] [CrossRef]
- Couairon, A.; Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 2007, 441, 47. [Google Scholar] [CrossRef]
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 1995, 20, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Kasparian, J.; Sauerbrey, R.; Mondelain, D.; Niedermeier, S.; Yu, J.; Wolf, J.P.; Andre, Y.B.; Franco, M.; Mysyrowicz, A.; Rodriguez, M.; et al. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 2000, 25, 1397–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodeur, A.; Chin, S.L. Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 1998, 80, 4406. [Google Scholar] [CrossRef]
- Liu, X.L.; Lu, X.; Liu, X.; Feng, L.B.; Ma, J.L.; Li, Y.T.; Chen, M.; Dong, Q.L.; Wang, W.M.; Wang, Z.H.; et al. Broadband supercontinuum generation in air using tightly focused femtosecond laser pulses. Opt. Lett. 2011, 36, 3900. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Shi, K.; Liu, Z.; Philbrick, C.R. Long-path supercontinuum absorption spectroscopy for measurement of atmospheric constituents. Opt. Express 2008, 16, 8457. [Google Scholar] [CrossRef]
- Husakou, A.V.; Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 2001, 87, 203901. [Google Scholar] [CrossRef] [Green Version]
- Glezer, E.N.; Siegal, Y.; Huang, L.; Mazur, E. Laser-induced band-gap collapse in GaAs. Phys. Rev. B 1995, 51, 6959. [Google Scholar] [CrossRef]
- Potemkin, F.V.; Mareev, E.I.; Smetanina, E.O. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water. Phys. Rev. A 2018, 97, 033801. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Moloney, J. Filamentation of femtosecond laser Airy beams in water. Phys. Rev. Lett. 2009, 103, 123902. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tan, W.J.; Si, J.H.; Tang, S.Y.; Yang, Y.; Hou, X. Depolarization of the supercontinuum induced by linearly and circularly polarized femtosecond laser pulses in water. Phys. Rev. A 2021, 104, 053535. [Google Scholar] [CrossRef]
- Melnik, M.; Vorontsova, I.; Putilin, S.; Tcypkin, A. The dependence of the supercontinuum coherence time in water jet on the input radiation intensity. Appl. Phys. B 2020, 126, 60. [Google Scholar] [CrossRef]
- Cook, K.; Kar, A.K.; Lamb, R.A. White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett. 2003, 83, 3861. [Google Scholar] [CrossRef]
- Vasa, P.; Singh, M.; Bernard, R.; Dharmadhikari, A.K.; Dharmadhikari, J.A.; Mathur, D. Supercontinuum generation in water doped with gold nanoparticles. Appl. Phys. Lett. 2013, 103, 111109. [Google Scholar]
- Li, H.; Shi, Z.; Wang, X.; Sui, L.; Li, S.; Jin, M. Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water. Chem. Phys. Lett. 2017, 681, 86. [Google Scholar] [CrossRef]
- Tcypkin, A.N.; Putilin, S.E.; Melnik, M.V.; Makarov, E.A.; Bespalov, V.G.; Kozlov, S.A. Generation of high-intensity spectral super continuum of more than two octaves in a water jet. Appl. Opt. 2016, 55, 8390. [Google Scholar] [CrossRef]
- Vengris, M.; Garejev, N.; Tamošauskas, G.; Čepėnas, A.; Rimkus, L.; Varanavičius, A.; Jukna, V.; Dubietis, A. Supercontinuum generation by co-filamentation of two color femtosecond laser pulses. Sci. Rep. 2019, 9, 9011. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n2 measurements. Opt. Lett. 1989, 14, 955–957. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Z.; Yang, J.; Ye, H. Large optical nonlinearity of ITO/Ag/ITO sandwiches based on Z-scan measurement. Opt. Lett. 2019, 44, 2490–2493. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, L.; Chen, A.; Zhang, D.; Wang, Q.; Xu, W.; Li, S.; Jin, M. Spectral resolved study of filamentation effect on the nonlinear absorption in carbon disulfide. Opt. Express 2019, 27, 20980–20989. [Google Scholar] [CrossRef]
Vortex Beam | Research Content |
---|---|
0-order BG | control of filament [27,28,29,30] |
accompanied nonlinear phenomena [30,31,32] | |
Higher-order BG | control of filament [37] |
nonlinear propagation and filamentation [38] | |
Higher-order LG | multiple filaments [33,34,35,36] |
Coherence of SC [39] |
Vortex Beam | Pulse Energy (μJ) | TC Value |
---|---|---|
LG | 10 | l = 0~5 |
52 | l = 0~5 | |
104 | l = 0~5 | |
BG | 188 | l = 0~5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Huo, L.; Ni, Y.; Wu, Z.; Chen, T.; Gao, S.; Li, S. Supercontinuum Induced by Filamentation of Bessel-Gaussian and Laguerre-Gaussian Beams in Water. Appl. Sci. 2022, 12, 6005. https://doi.org/10.3390/app12126005
Wu J, Huo L, Ni Y, Wu Z, Chen T, Gao S, Li S. Supercontinuum Induced by Filamentation of Bessel-Gaussian and Laguerre-Gaussian Beams in Water. Applied Sciences. 2022; 12(12):6005. https://doi.org/10.3390/app12126005
Chicago/Turabian StyleWu, Jiabin, Li Huo, Yingxue Ni, Zhiyong Wu, Tao Chen, Shijie Gao, and Suyu Li. 2022. "Supercontinuum Induced by Filamentation of Bessel-Gaussian and Laguerre-Gaussian Beams in Water" Applied Sciences 12, no. 12: 6005. https://doi.org/10.3390/app12126005
APA StyleWu, J., Huo, L., Ni, Y., Wu, Z., Chen, T., Gao, S., & Li, S. (2022). Supercontinuum Induced by Filamentation of Bessel-Gaussian and Laguerre-Gaussian Beams in Water. Applied Sciences, 12(12), 6005. https://doi.org/10.3390/app12126005