Widely Wavelength-Tunable High Power Single-Longitudinal-Mode Fiber Laser in Mid-Infrared Waveband
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geng, J.; Jiang, S. Fiber lasers: The 2 μm market heats up. Opt. Photon. News 2014, 25, 34–41. [Google Scholar] [CrossRef]
- Boulnois, J.L. Photophysical processes in recent medical laser developments: A review. Lasers Med. Sci. 1986, 1, 47–66. [Google Scholar] [CrossRef]
- Masters, B.R. Three-dimensional microscopic tomographic imaging of the cataract in a human lens in vivo. Opt. Express 1998, 3, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Yelin, D.; Oron, D.; Thiberge, S.; Moses, E.; Silberberg, Y. Multiphoton plasmon-resonance microscopy. Opt. Express 2003, 11, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Tittel, F.K.; Richter, D.; Fried, A. Mid-infrared laser applications in spectroscopy. In Solid-State Mid-Infrared Laser Sources; Sorokina, I.T., Vodopyanov, K.L., Eds.; Springer: Heidelberg/Berlin, Germany, 2003; pp. 458–529. [Google Scholar]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Kühnemann, F.; Schneider, K.; Hecker, A.; Martis, A.; Urban, W.; Schiller, S.; Mlynek, J. Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator. Appl. Phys. B 1998, 66, 741–745. [Google Scholar] [CrossRef]
- Li, J.; Parchatka, U.; Fischer, H.A. Formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser. Anal. Methods 2014, 6, 5483–5488. [Google Scholar] [CrossRef]
- Kang, Z.; Mei, C.; Zhang, L.Q.; Evans, J.; He, S. Advanced Progress on χ(3) Nonlinearity in Chip-Scale Photonic Platforms. Prog. Electromagn. Res. 2021, 170, 17–62. [Google Scholar] [CrossRef]
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Lai, J.Y.; Guo, H.T.; Chen, Y.C.; Hsu, C.W.; Wu, D.Y.; Chou, M.H.; Yang, S.D. Single-frequency Mod-hop Free Tunable 3 μm Laser Pumped by a 2W Diode for Isotopic Gas Sensing. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Shukla, M.K.; Das, R. High-power single-frequency source in the mid-infrared using a singly resonant optical parametric oscillator pumped by Yb-fiber laser. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–6. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Li, Z. Stable and tunable single frequency mid-infrared optical parametric oscillator on High Power Lasers. In Proceedings of the SPIE on High Energy Lasers, and Silicon-Based Photonic Integration, Beijing, China, 19 October 2016; p. 1015209. [Google Scholar]
- Zhao, J.; Cheng, P.; Xu, F.; Zhou, X.; Tang, J.; Liu, Y.; Wang, G. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on mgo: Ppln at 3.68 µm. Appl. Sci. 2018, 8, 1345. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, F.; Lu, Y.; Yin, T.; He, S. Generating Picosecond Pulses with the Largest Number of Lasing Wavelengths by an All-Fiber Optical Parametric Oscillator. Prog. Electromagn. Res. 2020, 167, 11–17. [Google Scholar] [CrossRef]
- Wang, M.; Hosoda, T.; Shterengas, L.; Kipshidze, G.; Lu, M.; Stein, A.; Belenky, G. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm. Opt. Eng. 2017, 57, 011012. [Google Scholar] [CrossRef]
- Totschnig, G.; Winter, F.; Pustogov, V.; Faist, J.; Müller, A. Mid-infrared external-cavity quantum-cascade laser. Opt. Lett. 2002, 27, 1788–1790. [Google Scholar] [CrossRef] [PubMed]
- Bernier, M.; Michaud-Belleau, V.; Levasseur, S.; Fortin, V.; Genest, J.; Vallée, R. All-fiber DFB laser operating at 2.8 μm. Opt. Lett. 2015, 40, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.D.; Williams, R.J.; Withford, M.J.; Jackson, S.D. Single-frequency fiber laser operating at 2.9 μm. Opt. Lett. 2013, 38, 2388–2390. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, G.; Curl, R.F.; Tittel, F.K.; Maulini, R.; Bulliard, J.M.; Faist, J. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B 2005, 81, 769–777. [Google Scholar] [CrossRef]
- Seger, K.; Meiser, N.; Canalias, C.; Pasiskevicius, V.; Laurell, F. Tunable, passively Q-switched single-longitudinal-mode Nd:YVO4 laser using a chirped volume Bragg grating. Appl. Phys. B 2012, 109, 99–103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Jiang, X.; Chen, F.; Lu, C.; He, S. Widely Wavelength-Tunable High Power Single-Longitudinal-Mode Fiber Laser in Mid-Infrared Waveband. Appl. Sci. 2021, 11, 2073. https://doi.org/10.3390/app11052073
Lu Y, Jiang X, Chen F, Lu C, He S. Widely Wavelength-Tunable High Power Single-Longitudinal-Mode Fiber Laser in Mid-Infrared Waveband. Applied Sciences. 2021; 11(5):2073. https://doi.org/10.3390/app11052073
Chicago/Turabian StyleLu, Yi, Xiaogang Jiang, Feihong Chen, Chenlong Lu, and Sailing He. 2021. "Widely Wavelength-Tunable High Power Single-Longitudinal-Mode Fiber Laser in Mid-Infrared Waveband" Applied Sciences 11, no. 5: 2073. https://doi.org/10.3390/app11052073
APA StyleLu, Y., Jiang, X., Chen, F., Lu, C., & He, S. (2021). Widely Wavelength-Tunable High Power Single-Longitudinal-Mode Fiber Laser in Mid-Infrared Waveband. Applied Sciences, 11(5), 2073. https://doi.org/10.3390/app11052073