# UFMC-Based Underwater Voice Transmission Scheme with LDPC Codes

## Abstract

**:**

## 1. Introduction

## 2. System Models

## 3. Simulation Results

## 4. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

3GPP-lTE | 3rd generation partnership project long-term evolution |

5G | Fifth-generation |

AIC | Active interference cancellation |

AWGN | Additive white Gaussian noise |

BER | Bit error rate |

BPSK | Binary phase-shift keying |

CEEs | Channel estimation errors |

CP | Cyclic prefix |

CSMA/CA | Carrier sense multiple access with collision avoidance |

DSL | Digital subscriber line |

DM | Direct mapping |

FBMC | Filter bank multicarrier |

GFDM | Generalized frequency division multiplexing |

GS | Gold sequence |

IDFT | Inverse discrete Fourier transform |

IoT | Internet of Things |

LDPC | Low-density parity-check |

M2M | Machine-to-machine |

MIMO | Multi-input multi-output |

MSE | Mean square error |

OFDM | Orthogonal frequency-division multiplexing |

OQAM | Offset quadrature amplitude modulation |

OVSF | Orthogonal variable spreading factor |

PAPR | Peak-to-average power ratio |

PCE | Perfect channel estimation |

QAM | Quadrature amplitude modulation |

QPSK | Quadrature phase-shift keying |

RB | Resource block |

SNR | Signal-to-noise ratios |

UAC | Underwater acoustic communication |

UFMC | universal filtered multi-carrier |

## References

- Yang, T.C. Properties of Underwater Acoustic Communication Channels in Shallow Water. J. Acoust. Soc. Am.
**2012**, 131, 129–145. [Google Scholar] [CrossRef] [PubMed] - Zhou, Y.; Song, A.; Tong, F. Underwater acoustic channel characteristics and communication performance at 85 KHz. J. Acoust. Soc. Am.
**2017**, 142, EL350–EL355. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cheng, X.; Yang, L.; Cheng, X. Cooperative OFDM Underwater Acoustic Communications; Springer: Cham, Switzerland, 2016; pp. 1–104. [Google Scholar]
- Behrouz, F.B.; Moradi, H. OFDM inspired waveforms for 5G. IEEE Commun. Surv. Tutor.
**2016**, 18, 2474–2492. [Google Scholar] - Cai, Y.; Qin, Z.; Cui, F.; Li, G.Y.; Julie, A.M. Modulation and multiple access for 5G networks. IEEE Commun. Surv. Tutor.
**2018**, 20, 629–646. [Google Scholar] [CrossRef][Green Version] - Schaich, F.; Wild, T. Waveform contenders for 5G—OFDM vs. FBMC vs. UFMC. In Proceedings of the IEEE 2014 6th International Symposium on Communications, Control and Signal Processing, Athens, Greece, 21–23 May 2014; pp. 457–460. [Google Scholar]
- Bochechka, G.; Tikhvinskiy, V.; Ivan, V.; Altay, A.; Bolat, N. Comparative analysis of UFMC technology in 5G networks. In Proceedings of the IEEE 2017 International Siberian Conference on Control and Communications, Astana, Kazakhstan, 29–30 June 2017. [Google Scholar]
- Kumar, P.P.; Kishore, K.K. BER and PAPR analysis of UFMC for 5G communication. Indian J. Sci. Technol.
**2016**, 9, 1–6. [Google Scholar] - Helwa, S.S.; Ibrahim, M.; Elramly, S. Universal filtered multi-carrier performance analysis with multipath fading channels. In Proceedings of the IEEE 2016 10th International Conference on Next Generation Mobile Applications, Security and Technologies, Cardiff, UK, 24–26 August 2016; pp. 35–40. [Google Scholar]
- Charleston, D.; Ambatali, M.; Marciano, J.J. Performance evaluation of the UFMC scheme under various transmission impairments. In Proceedings of the IEEE 2016 International Conference on Communication, Networks and Satellite, Surabaya, Indonesia, 8–10 December 2016; pp. 24–28. [Google Scholar]
- Wang, H.; Zhang, Z.; Zhang, Y.; Wang, C. Universal filtered multi-carrier transmission with active interference cancellation. In Proceedings of the IEEE 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 21–23 October 2015. [Google Scholar]
- Rani, P.N.; Rani, C.S. UFMC: The 5G modulation technique. In Proceedings of the IEEE 2016 International Conference on Computational Intelligence and Computing Research, Chennai, India, 15–17 December 2016. [Google Scholar]
- Wen, J.; Hua, J.; Lu, W.; Zhang, Y.; Wang, D. Design of waveform shaping filter in the UFMC system. IEEE Access.
**2018**, 6, 32300–32309. [Google Scholar] [CrossRef] - Eeckhaute, M.V.; Bourdoux, A.; Doncker, P.D.; Horlin, F. Performance of emerging multi-carrier waveforms for 5G asynchronous communications. EURASIP J. Wirel. Commun. Netw.
**2017**, 29. [Google Scholar] [CrossRef] - Zhang, L.; Xiao, P.; Quddus, A. Cyclic prefix-based universal filtered multicarrier system and performance analysis. IEEE Signal Process. Lett.
**2016**, 23, 1197–1201. [Google Scholar] [CrossRef][Green Version] - Chen, L.; Yu, J.G. Interference cancelation scheme with variable bandwidth allocation for universal filtered multicarrier systems in 5G networks. EURASIP J. Wirel. Commun. Netw.
**2018**, 1, 1–10. [Google Scholar] [CrossRef][Green Version] - Huang, J.; Zhou, S.; Willett, P. Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE J. Sel. Areas Commun.
**2008**, 26, 1684–1696. [Google Scholar] [CrossRef] - Liu, S.; Song, A. Optimization of LDPC codes over the underwater acoustic channel. Int. J. Distrib. Sens. Netw.
**2016**, 12, 1–10. [Google Scholar] [CrossRef][Green Version] - Amini, P.; Chen, R.R.; Behrouz, F.B. Filterbank multicarrier communications for underwater acoustic channel. IEEE J. Ocean. Eng.
**2015**, 40, 115–130. [Google Scholar] [CrossRef] - Lin, C.F.; Chen, J.Y.; Yu, Y.J.; Yan, J.T.; Chang, S.H. Direct mapping OVSF-based transmission scheme for underwater acoustic multimedia communication. J. Mar. Sci. Technol.
**2010**, 18, 413–418. [Google Scholar] - Lin, C.F.; Chang, S.H.; Lee, C.C.; Wu, W.C.; Chen, W.H.; Chang, K.H.; Lee, J.C.Y.; Parinov, I.A. Underwater acoustic multimedia communication based on MIMO-OFDM. Wirel. Pers. Commun.
**2013**, 71, 1231–1245. [Google Scholar] [CrossRef] - Lin, C.F.; Lai, H.H.; Chang, S.H. MIMO GS OVSF/OFDM based underwater acoustic multimedia communication scheme. Wirel. Pers. Commun.
**2018**, 101, 601–617. [Google Scholar] [CrossRef] - Lin, C.F.; Hung, Y.T.; Lu, H.W.; Chang, S.H.; Parinov, I.A.; Shevtsov, S. FBMC/LDPC-based underwater transceiver architecture for voice and image transmission. J. Mar. Sci. Technol.
**2018**, 26, 327–334. [Google Scholar] - Lin, C.F.; Su, T.J.; Chang, H.K.; Lee, C.K.; Hsyung Chang, S.H.; Parinov, I.A.; Shevtsov, S. Direct mapping based MIMO-FBMC underwater acoustic communication architecture for multimedia signals. Appl. Sci.
**2020**, 10, 233. [Google Scholar] [CrossRef][Green Version] - Germany, F. 5G Waveform Candidate Selection; 5GNOW_D3.1_v1.1.docx; pp. 15–19. Available online: https://pdfslide.net/reader/f/5gnowd31v11 (accessed on 18 February 2021).
- Chitre, M. A high-frequency warm shallow water acoustic communications channel model and measurements. J. Acoust. Soc. Am.
**2007**, 122, 2580–2586. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**The proposed universal filtered multicarrier (UFMC)-based underwater transceiver with a low-density parity-check (LDPC) code for voice signals.

**Figure 2.**Quadrature amplitude modulation (QAM) bit error rate (BER) performances of the UFMC-based underwater transceiver with an LDPC code, a perfect channel estimation (PCE) and channel estimation errors (CEEs) of 5% and 10%.

**Figure 3.**Transmission power weighting of the UFMC-based underwater transceiver with an LDPC code and a BER of $4\times {10}^{-4}$ for PCE and CEEs of 5% and 10%.

**Figure 4.**Power saving ratio of the UFMC-based underwater transceiver with an LDPC code and a BER of $4\times {10}^{-4}$ for PCE and CEEs of 5% and 10%.

Technology | Technology Characteristics |
---|---|

UFMC modulation | 5GNOW_D3.1_v1.1 [25] |

Number of IDFT points | 512-points |

Number of subbands | 10 |

Subband size | 20 |

Filter method | Chebyshev filtering operation |

Channel bandwidth | 20 kHz |

Adaptive modulation | 4-QAM, and 16-QAM |

Channel coding | (2000, 1000) LDPC code encoder with a code rate of 1/2, a column weight of 3, a row weight of 6 |

Voice compression method | G.729 encoder |

Power levels | 1/30, 2/30, …, 30/30 |

BER limits for voice transmission | ${10}^{-3}$ |

**Table 2.**Parameters of the adopted underwater channel model [26].

Parameter | Value |
---|---|

Depth of transmitter beneath the sea surface, meters | 3 |

Depth of receiver beneath the sea surface, meters | 2 |

Water depth, meters | 14.5 |

Water sound speed | 1539 m/s |

Range of direct path, meters | 100 |

Carrier frequency | 40 kHz |

Channel bandwidth | 20 kHz |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lin, C.-F. UFMC-Based Underwater Voice Transmission Scheme with LDPC Codes. *Appl. Sci.* **2021**, *11*, 1818.
https://doi.org/10.3390/app11041818

**AMA Style**

Lin C-F. UFMC-Based Underwater Voice Transmission Scheme with LDPC Codes. *Applied Sciences*. 2021; 11(4):1818.
https://doi.org/10.3390/app11041818

**Chicago/Turabian Style**

Lin, Chin-Feng. 2021. "UFMC-Based Underwater Voice Transmission Scheme with LDPC Codes" *Applied Sciences* 11, no. 4: 1818.
https://doi.org/10.3390/app11041818