Development of Cryogenic Detectors for Neutrinoless Double Beta Decay Searches with CUORE and CUPID
Abstract
1. Introduction
2. The Experimental Search for Neutrinoless Double Beta Decay
- Minimization of the continuous background (i.e., lowering B factor), achievable by :
- -
- Placing the experiment underground, in order to reduce the cosmic ray contribution to the experimental background;
- -
- Building the detector with radiopure materials, in order to minimize the and contribution to the background;
- -
- Cleaning the surface of materials from radioactive contaminations, in order to reduce the degraded particle contribution to the background;
- -
- Shielding of the detector’s active volume with lead and copper layers, in order to reduce the external and setup radioactivity;
- -
- Developing particle identification techniques, in order to discriminate degraded particles from electrons signals;
- -
- Choosing a candidate isotope with high , in order to reduce and events from the ROI and enhance the / signal ratio;
- Observation of large isotope mass (i.e., increasing M factor), achievable by:
- -
- Choosing a candidate isotope with high natural isotopic abundance (high );
- -
- Choosing a detector technology that allows easy mass scalability, that is, to have high masses without substantial technological issues;
- Achieve good energy resolution (i.e., decreasing the factor), to reduce the background in the ROI;
- Long time of observation (i.e., increasing the factor), achievable by choosing stable detectors with low maintenance issues.
3. The CUORE Development
4. Beyond the CUORE Sensitivity
4.1. The CUPID Challenge
- Increase the emitters via isotopic enrichment;
- Active rejection of alphas and surface backgrounds in detector materials;
- Further reduction (compared to CUORE) in the backgrounds by careful material and isotope selection and an active veto for muon-induced events.
- The emitted Cherenkov light at the Te is very small (∼100 eV), and therefore the energy RMS resolution of the light detectors must be less than 20 eV, and this cannot currently be guaranteed;
- The -background at the Te is one order of magnitude higher with respect to the CUPID goal.
4.2. An Alternative to Cryogenic Calorimeters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Agnese, R.; et al. [SuperCDMS Collaboration] Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. Phys. Rev. Lett. 2018, 120, 061802. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, Q.; et al. [EDELWEISS Collaboration] First germanium-based constraints on sub-MeV Dark Matter with the EDELWEISS experiment. Phys. Rev. Lett. 2020, 125, 141301. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, A.H.; et al. [CRESST Collaboration] First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 2019, 100, 102002. [Google Scholar] [CrossRef]
- Angloher, G.; et al. [CRESST Collaboration] Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C 2016, 76, 25. [Google Scholar] [CrossRef]
- Adams, D.; et al. [CUORE Collaboration] Improved Limit on Neutrinoless Double-Beta Decay in 130Te with CUORE. Phys. Rev. Lett. 2020, 124, 122501. [Google Scholar] [CrossRef]
- Azzolini, O.; et al. [CUPID-0 Collaboration] CUPID-0: The first array of enriched scintillating bolometers for 0νββ decay investigations. Eur. Phys. J. 2018, C78, 428. [Google Scholar] [CrossRef]
- Armengaud, E.; et al. [CUPID-Mo Collaboration] The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 44. [Google Scholar] [CrossRef]
- Alenkov, V.; et al. [AMoRE Collaboration] First Results from the AMoRE-Pilot neutrinoless double beta decay experiment. Eur. Phys. J. C 2019, 79, 791. [Google Scholar] [CrossRef]
- Fukuda, Y.; et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; et al. [SNO Collaboration] Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef]
- Adamson, P.; et al. [MINOS Collaboration] Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS. Phys. Rev. Lett. 2011, 106, 181801. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; et al. [T2K Collaboration] Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-axis Beam. Phys. Rev. Lett. 2013, 111, 211803. [Google Scholar] [CrossRef] [PubMed]
- Bellini, F.; Beretta, M.; Cardani, L.; Carniti, P.; Casali, N.; Celi, E.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; et al. Search for double β-decay modes of 64Zn using purified zinc. Eur. Phys. J. C 2021, 81, 106. [Google Scholar] [CrossRef]
- Cremonesi, O.; Pavan, M. Challenges in Double Beta Decay. Adv. High Energy Phys. 2014, 2014, 951432. [Google Scholar] [CrossRef]
- Strumia, A.; Vissani, F. Neutrino masses and mixings and…. arXiv 2006, arXiv:hep-ph/0606054. [Google Scholar]
- Dolinski, M.J.; Poon, A.W.P.; Rodejohann, W. Neutrinoless Double-Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci. 2019, 69, 219–251. [Google Scholar] [CrossRef]
- Biassoni, M.; Cremonesi, O.; Gorla, P. A new way of comparing double beta decay experiments. arXiv 2014, arXiv:1310.3870. [Google Scholar]
- Fiorini, E.; Niinikoski, T. Low Temperature Calorimetry for Rare Decays. Nucl. Instrum. Meth. A 1984, 224, 83. [Google Scholar] [CrossRef]
- Ackermann, K.H.; et al. [GERDA Collaboration] The GERDA experiment for the search of 0νββ decay in 76Ge. Eur. Phys. J. C 2013, 73, 2330. [Google Scholar] [CrossRef]
- Aalseth, C.E.; et al. [Majorana Collaboration] The Majorana neutrinoless double beta decay experiment. Phys. Atom. Nucl. 2004, 67, 2002–2010. [Google Scholar] [CrossRef]
- D’Andrea, V. Neutrinoless Double Beta Decay Search with 76Ge: Status and Prospect with LEGEND. In Proceedings of the 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (Moriond EW 2019), La Thuile, Italy, 16–23 March 2019. [Google Scholar]
- Gando, A.; et al. [KamLAND-Zen Collaboration] Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment. Phys. Rev. C 2012, 85, 045504. [Google Scholar] [CrossRef]
- Leming, E. SNO+: Current Results and Future Prospects. PoS NOW2018 2019, 27. [Google Scholar] [CrossRef]
- Caccianiga, B.; Giammarchi, M.G. Neutrinoless double beta decay with Xe-136 in BOREXINO and the BOREXINO Counting Test Facility (CTF). Astropart. Phys. 2000, 14, 15–31. [Google Scholar] [CrossRef]
- Brofferio, C.; Dell’Oro, S. Contributed Review: The saga of neutrinoless double beta decay search with TeO2 thermal detectors. Rev. Sci. Instrum. 2018, 89, 121502. [Google Scholar] [CrossRef]
- Artusa, D.R.; et al. [CUORE collaboration] Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors. Eur. Phys. J. 2014, C74, 3096. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Garcia, E.; Giuliani, A.; de Marcillac, P.; Nucciotti, A.; Pavan, M.; et al. A New search for neutrinoless beta beta decay with a thermal detector. Phys. Lett. B 1994, 335, 519–525. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; et al. Preliminary results on double beta decay of Te-130 with an array of twenty cryogenic detectors. Phys. Lett. B 1998, 433, 156–162. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; et al. New experimental results on double beta decay of Te-130. Phys. Lett. B 2000, 486, 13–21. [Google Scholar] [CrossRef]
- Aglietta, M.; et al. [LVD Collaboration] Muon ‘Depth intensity’ relation measured by LVD underground experiment and cosmic ray muon spectrum at sea level. Phys. Rev. D 1998, 58, 092005. [Google Scholar] [CrossRef]
- Cribier, M.; et al. [GALLEX collaboration] The muon induced background in the GALLEX experiment. Astropart. Phys. 1999, 6, 129–141. [Google Scholar] [CrossRef]
- Wulandari, H.; Jochum, J.; Rau, W.; von Feilitzsch, F. Neutron flux underground revisited. Astropart. Phys. 2004, 22, 313–322. [Google Scholar] [CrossRef]
- Ahlen, S.P.; et al. [MACRO Collaboration] Study of penetrating cosmic ray muons and search for large scale anisotropies at the Gran Sasso Laboratory. Phys. Lett. B 1990, 249, 149–156. [Google Scholar] [CrossRef]
- Alessandrello, A.; Arpesella, C.; Brofferio, C.; Bucci, C.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Latorre, S.; Nucciotti, A.; et al. Measurements of internal radioactive contamination in samples of Roman lead to be used in experiments on rare events. Nucl. Instrum. Meth. 1998, B142, 163–172. [Google Scholar] [CrossRef]
- Arnaboldi, C.; Artusa, D.R.; Avignone, F.T., III; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Bellini, F.; Brofferio, C.; Bucci, C.; et al. Results from a search for the 0 neutrino beta beta-decay of Te-130. Phys. Rev. C 2008, 78, 035502. [Google Scholar] [CrossRef]
- Andreotti, E.; Arnaboldi, C.; Avignone, F.T., III; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Bellini, F.; Brofferio, C.; Bryant, A.; et al. 130Te Neutrinoless Double-Beta Decay with CUORICINO. Astropart. Phys. 2011, 34, 822–831. [Google Scholar] [CrossRef]
- Andreotti, E.; Arnaboldi, C.; Avignone, F.T., III; Balata, M.; Bandac, I.; Barucci, M.; Beeman, J.W.; Bellini, F.; Brofferio, C.; Bryant, A.; et al. Double-beta decay of 130Te to the first 0+ excited state of 130Xe with CUORICINO. Phys. Rev. C 2012, 85, 045503. [Google Scholar] [CrossRef]
- Alduino, C.; et al. [CUORE-0 collaboration] CUORE-0 detector: Design, construction and operation. J. Instrum. 2016, 11, P07009. [Google Scholar] [CrossRef]
- Alfonso, K.; et al. [CUORE-0 collaboration] Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0. Phys. Rev. Lett. 2015, 115, 102502. [Google Scholar] [CrossRef]
- Alduino, C.; et al. [CUORE-0 collaboration] Analysis techniques for the evaluation of the neutrinoless double-β decay lifetime in 130Te with the CUORE-0 detector. Phys. Rev. 2016, C93, 045503. [Google Scholar] [CrossRef]
- Alduino, C.; et al. [CUORE collaboration] The CUORE cryostat: An infrastructure for rare event searches at millikelvin temperatures. Cryogenics 2019, 102, 9–21. [Google Scholar] [CrossRef]
- The CUPID Interest Group. CUPID pre-CDR. arXiv 2019, arXiv:1907.09376. [Google Scholar]
- Agostini, M.; Benato, G.; Detwiler, J. Discovery probability of next-generation neutrinoless double- β decay experiments. Phys. Rev. D 2017, 96, 053001. [Google Scholar] [CrossRef]
- Gonzalez-Mestres, L.; Perret-Gallix, D. Detection of Low-energy Solar Neutrinos and Galactic Dark Matter With Crystal Scintillators. Nucl. Instrum. Meth. 1989, A279, 382–387. [Google Scholar] [CrossRef]
- Alessandrello, A.; Bashkirov, V.; Brofferio, C.; Camin, D.V.; Cremonesi, O.; Fiorini, E.; Gervasio, G.; Giuliani, A.; Pavan, M.; Pessina, G.L.; et al. Development of a thermal scintillating detector for double beta decay of Ca-48. Nucl. Phys. Proc. Suppl. 1992, 28A, 233–235. [Google Scholar] [CrossRef]
- Bobin, C.; Berkes, I.; Hadjout, J.P.; Coron, N.; Leblanc, J.; de Marcillac, P. Alpha/gamma discrimination with a CaF-2(Eu) target bolometer optically coupled to a composite infrared bolometer. Nucl. Instrum. Meth. 1997, A386, 453–457. [Google Scholar] [CrossRef]
- Pirro, S.; Beeman, J.W.; Capelli, S.; Pavan, M.; Previtali, E.; Gorla, P. Scintillating double-beta-decay bolometers. Phys. At. Nucl. 2006, 69, 2109–2116. [Google Scholar] [CrossRef]
- Arnaboldi, C.; Beeman, J.W.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E. CdWO4 scintillating bolometer for Double Beta Decay: Light and Heat anticorrelation, light yield and quenching factors. Astropart. Phys. 2010, 34, 143–150. [Google Scholar] [CrossRef]
- Arnaboldi, C.; Capelli, S.; Cremonesi, O.; Gironi, L.; Pavan, M.; Pessina, G.; Pirro, S. Characterization of ZnSe scintillating bolometers for Double Beta Decay. Astropart. Phys. 2011, 34, 344–353. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Capelli, S.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Galashov, E.N.; Gironi, L.; et al. ZnMoO4: A promising bolometer for neutrinoless double beta decay searches. Astropart. Phys. 2012, 35, 813–820. [Google Scholar] [CrossRef][Green Version]
- Azzolini, O.; et al. [CUPID-0 collaboration] First Result on the Neutrinoless Double-β Decay of 82Se with CUPID-0. Phys. Rev. Lett. 2018, 120, 232502. [Google Scholar] [CrossRef]
- Azzolini, O.; et al. [CUPID-0 collaboration] Final result of CUPID-0 phase-I in the search for the 82Se Neutrinoless Double Beta Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef]
- Armengaud, E.; et al. [CUPID-Mo collaboration] Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology. Eur. Phys. J. C 2020, 80, 674. [Google Scholar] [CrossRef]
- Armengaud, E.; et al. [CUPID-Mo collaboration] A new limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment. arXiv 2020, arXiv:2011.13243. [Google Scholar]
- Wang, G.; et al. [CUPID Interest Group] CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification. arXiv 2015, arXiv:1504.03599. [Google Scholar]
- Wang, G.; et al. [CUPID Interest Group] R&D towards CUPID (CUORE Upgrade with Particle IDentification). arXiv 2015, arXiv:1504.03612. [Google Scholar]
- Schmidt, B.; et al. [CUPID-Mo collaboration] First data from the CUPID-Mo neutrinoless double beta decay experiment. J. Phys. Conf. Ser. 2020, 1468, 012129. [Google Scholar] [CrossRef]
- Hennings-Yeomans, R.; Chang, C.L.; Ding, J.; Drobizhev, A.; Fujikawa, B.K.; Han, S.; Karapetrov, G.; Kolomensky, Y.G.; Novosad, V.; O’Donnell, T.; et al. Controlling Tc of Iridium Films Using the Proximity Effect. J. Appl. Phys. 2020, 128, 154501. [Google Scholar] [CrossRef]
- Casali, N.; Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Martinez, M.; Pettinari, G.; Vignati, M. Phonon and light read out of a Li2MoO4 crystal with multiplexed kinetic inductance detectors. Eur. Phys. J. C 2019, 79, 724. [Google Scholar] [CrossRef]
- Artusa, D.R.; Avignone, F.T.; Beeman, J.W.; Dafinei, I.L.; Dumoulin, I.; Ge, Z.; Giuliani, A.; Gotti, C.; de Marcillac, P.; Marnieros, S.; et al. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment. Phys. Lett. B 2017, 767, 321–329. [Google Scholar] [CrossRef]
- Spooner, N.; Homer, G.; Smith, P. Investigation of voltage amplification of thermal spectra (‘Luke effect’) in a low temperature calorimetric detector. Phys. Lett. B 1992, 278, 383–384. [Google Scholar] [CrossRef]
- Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; et al. Cerenkov light identification with Si low-temperature detectors with sensitivity enhanced by the Neganov-Luke effect. Phys. Rev. C 2016, 94, 054608. [Google Scholar] [CrossRef]
- Bergé, L.; Chapellier, M.; de Combarieu, M.; Dumoulin, L.; Giuliani, A.; Gros, M.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; et al. Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection. Phys. Rev. C 2018, 97, 032501. [Google Scholar] [CrossRef]
- Casali, N. Model for the Cherenkov light emission of TeO2 cryogenic calorimeters. Astropart. Phys. 2017, 91, 44–50. [Google Scholar] [CrossRef]
- Pattavina, L.; Casali, N.; Dumoulin, L.; Giuliani, A.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Nagorny, S.S.; Nones, C.; Olivieri, E.; et al. Background Suppression in Massive TeO2 Bolometers with Neganov–Luke Amplified Light Detectors. J. Low Temp. Phys. 2016, 184, 286–291. [Google Scholar] [CrossRef]
- Battistelli, E.S.; Bellini, F.; Bucci, C.; Calvo, M.; Cardani, L.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; et al. CALDER—Neutrinoless double-beta decay identification in TeO2 bolometers with kinetic inductance detectors. Eur. Phys. J. C 2015, 75, 353. [Google Scholar] [CrossRef] [PubMed]
- Schäffner, K.; Angloher, G.; Bellini, F.; Casali, N.; Ferroni, F.; Hauff, D.; Nagorny, S.S.; Pattavina, L.; Petricca, F.; Pirro, S.; et al. Particle discrimination in TeO2 bolometers using light detectors read out by transition edge sensors. Astropart. Phys. 2015, 69, 30–36. [Google Scholar] [CrossRef]
- Willers, M.; Feilitzsch, F.V.; Gutlein, A.; Munster, A.; Lanfranchi, J.-C.; Oberauer, L.; Potzel, W.; Roth, S.; Schonert, S.; Sivers, M.; et al. Neganov-Luke amplified cryogenic light detectors for the background discrimination in neutrinoless double beta decay search with TeO2 bolometers. J. Instrum. 2015, 10, P03003. [Google Scholar] [CrossRef][Green Version]
- Casali, N.; Vignati, M.; Beeman, J.W.; Bellini, F.; Cardani, L.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Nagorny, S.; et al. TeO2 bolometers with Cherenkov signal tagging: Towards next-generation neutrinoless double beta decay experiments. Eur. Phys. J. C 2015, 75, 12. [Google Scholar] [CrossRef] [PubMed]
- Bellini, F.; Casali, N.; Dafinei, I.; Marafini, M.; Morganti, S.; Orio, F.; Pinci, D.; Vignati, M.; Voena, C. Measurements of the Cerenkov light emitted by a TeO2 crystal. J. Instrum. 2012, 7, P11014. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Orio, F.; Pessina, G.; Pirro, S.; et al. Discrimination of alpha and beta/gamma interactions in a TeO2 bolometer. Astropart. Phys. 2012, 35, 558–562. [Google Scholar] [CrossRef][Green Version]
- Beeman, J.W.; Bellini, F.; Benetti, P.; Cardani, L.; Casali, N.; Chiesa, D.; Clemenza, M.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; et al. Current Status and Future Perspectives of the LUCIFER Experiment. Adv. High Energy Phys. 2013, 2013, 237973. [Google Scholar] [CrossRef]
- Dafinei, I.; Nagorny, S.; Pirro, S.; Cardani, L.; Clemenza, M.; Ferroni, F.; Laubenstein, M.; Nisi, S.; Pattavina, L.; Schaeffner, K.; et al. Production of 82Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 2017, 475, 158–170. [Google Scholar] [CrossRef]
- Beeman, J.W.; Bellini, F.; Cardani, L.; Casali, N.; Dafinei, I.; Di Domizio, S.; Ferroni, F.; Gironi, L.; Giuliani, A.; Nagorny, S.; et al. Performances of a large mass ZnSe bolometer to search for rare events. J. Instrum. 2013, 8, P05021. [Google Scholar] [CrossRef]
- Artusa, D.R.; Balzoni, A.; Beeman, J.W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First array of enriched Zn82Se bolometers to search for double beta decay. Eur. Phys. J. 2016, C76, 364. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, O.; et al. [CUPID-0 collaboration] Background Model of the CUPID-0 Experiment. Eur. Phys. J. 2019, C79, 583. [Google Scholar] [CrossRef]
- Azzolini, O.; et al. [CUPID-0 collaboration] Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of 82Se with CUPID-0. Phys. Rev. Lett. 2019, 123, 262501. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, O.; et al. [CUPID-0 collaboration] First search for Lorentz violation in double beta decay with scintillating calorimeters. Phys. Rev. 2019, D100, 092002. [Google Scholar] [CrossRef]
- Azzolini, O.; et al. [CUPID-0 collaboration] Search of the neutrino-less double beta decay of82 Se into the excited states of82 Kr with CUPID-0. Eur. Phys. J. C 2018, 78, 888. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, O.; et al. [CUPID-0 collaboration] Search for neutrinoless double beta decay of 64Zn and 70Zn with CUPID-0. Eur. Phys. J. C 2020, 80, 702. [Google Scholar] [CrossRef]
- Armatol, A.; et al. [CUPID collaboration] Characterization of cubic Li2100MoO4 crystals for the CUPID experiment. arXiv 2020, arXiv:2011.13656. [Google Scholar]
- Armatol, A.; et al. [CROSS collaboration] A CUPID Li2100MoO4 scintillating bolometer tested in the CROSS underground facility. arXiv 2020, arXiv:2011.13806. [Google Scholar]
- Armengaud, E.; et al. (CUPID-Mo collaboration] Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search. Eur. Phys. J. C 2017, 77, 785. [Google Scholar] [CrossRef] [PubMed]
- Son, J.K.; Choe, J.S.; Gileva, O.; Hahn, I.S.; Kang, W.G.; Kim, D.Y.; Kim, G.W.; Kim, H.J.; Kim, Y.D.; Lee, C.H.; et al. Growth and development of pure Li2MoO4 crystals for rare event experiment at CUP. J. High Energy Phys. 2020, 15, C07035. [Google Scholar] [CrossRef]
- Bandac, I.C.; et al. [CROSS collaboration] The 0ν2β-decay CROSS experiment: Preliminary results and prospects. J. High Energy Phys. 2020, 1, 018. [Google Scholar] [CrossRef]
- Khalife, H.; et al. [CROSS collaboration] The CROSS Experiment: Rejecting Surface Events by PSD Induced by Superconducting Films. J. Low Temp. Phys. 2020, 199, 19–26. [Google Scholar] [CrossRef]
- Armatol, A.; et al. [CUPID collaboration] A novel technique for the study of pile-up events in cryogenic bolometers. arXiv 2020, arXiv:2011.11726. [Google Scholar]
- Huang, R.; et al. [CUPID-Mo collaboration] Pulse Shape Discrimination in CUPID-Mo using Principal Component Analysis. arXiv 2020, arXiv:2010.04033. [Google Scholar]
- Borghesi, M.; De Gerone, M.; Faverzani, M.; Fedkevych, M.; Ferri, E.; Gallucci, G.; Giachero, A.; Nucciotti, A.; Puiu, A. A novel approach for nearly-coincident events rejection. arXiv 2021, arXiv:2101.02705. [Google Scholar]
- Mikhailik, V.B.; Kraus, H. Performance of scintillation materials at cryogenic temperatures. Phys. Status Solidi 2010, B247, 1583. [Google Scholar] [CrossRef]
- Bonvicini, V.; Capelli, S.; Cremonesi, O.; Cucciati, G.; Gironi, L.; Pavan, M.; Previtali, E.; Sisti, M. A flexible scintillation light apparatus for rare event searches. Eur. Phys. J. 2014, C74, 3151. [Google Scholar] [CrossRef][Green Version]
- Gatti, E.; Rehak, P. Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl. Instrum. Meth. 1984, A225, 608–614. [Google Scholar] [CrossRef]
- Butt, A.D.; Fiorini, C.; Beretta, M.; Gironi, L.; Capelli, S.; Previtali, E.; Sisti, M. Application of Silicon Drift Detectors for the Readout of a CdWO4 Scintillating Crystal. IEEE Trans. Nucl. Sci. 2018, 65, 1040–1046. [Google Scholar] [CrossRef]
- MacFarlane, A.G.J.; Dowling, J.P.; Milburn, G.J. Quantum technology: The second quantum revolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 361, 1655–1674. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S., II. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 486. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.; Gooding, D.; Gruszko, J.; Grant, C.; Naranjo, B.; Winslow, L. Light Yield of Perovskite Nanocrystal-Doped Liquid Scintillator. arXiv 2019, arXiv:1807.06634. [Google Scholar] [CrossRef]
- Winslow, L.; Simpson, R. Characterizing Quantum-Dot-Doped Liquid Scintillator for Applications to Neutrino Detectors. J. Instrum. 2012, 7, P07010. [Google Scholar] [CrossRef]
- Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L. Optical Properties of Quantum-Dot-Doped Liquid Scintillators. J. Instrum. 2013, 8, P10015. [Google Scholar] [CrossRef][Green Version]
- Beretta, M.; Amirkhani, A.; Brofferio, C.; Brovelli, S.; Buonanno, L.; Cova, F.; Capelli, S.; Fasoli, M.; Fiorini, C.; Gironi, L.; et al. The ESQUIRE project: Quantum Dots as scintillation detectors. Il Nuovo Cimento 2019, 42C. [Google Scholar] [CrossRef]
- Gandini, M.; Villa, I.; Beretta, M.; Gotti, C.; Imran, M.; Carulli, F.; Fantuzzi, E.; Sassi, M.; Zaffalon, M.; Brofferio, C.; et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020, 15, 462–468. [Google Scholar] [CrossRef]
Experiment | Exposure [kg yr] | Resolution [keV] | Background [cnts/(kev kg yr)] | Efficiency [%] | Reference |
---|---|---|---|---|---|
MiBETA | 0.66 | 8 ± 1 | 0.5 | 84.5 | [29] |
CUORICINO | 19.75 | 6 ± 0.5 | 0.2 | 82.8 ± 1.1 | [36] |
CUORE-0 | 9.8 | 5.1 ± 0.3 | (5.8 ± 0.4 0.2 ) | 81.3 ± 0.6 | [39] |
CUORE | 103.6 | 7.0 ± 0.4 | (1.38 ± 0.07) | 77.3 ± 0.1 | [5] |
CUPID-0 | 5.09 | 20.0 ± 0.3 | 70 ± 1 | [52] | |
CUPID-Mo | 0.48 | 7.7 ± 0.7 | 68 ± 1 | [57] | |
CUPID | 1000 | 5 | 64 | [42] |
Parameter | Baseline |
---|---|
Crystal | LiMoO |
Crystal size | 4.5 × 4.5 × 4.5 cm |
Crystal mass (g) | 241 |
Number of crystals | 1500 |
Number of light detectors | 1500 |
Detector mass (kg) | 362 |
Mo mass (kg) | 200 |
Energy resolution FWHM (keV) | 5 |
Background index (counts/(keV×kg× year)) | |
Containment efficiency | 79% |
Selection efficiency | 90% |
Lifetime | 10 years |
Half-life limit sensitivity (90%) C.L. | years |
Half-life discovery sensitivity () | years |
limit sensitivity (90%) C.L. | 10–17 meV |
discovery sensitivity () | 12–20 meV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beretta, M.; Pagnanini, L. Development of Cryogenic Detectors for Neutrinoless Double Beta Decay Searches with CUORE and CUPID. Appl. Sci. 2021, 11, 1606. https://doi.org/10.3390/app11041606
Beretta M, Pagnanini L. Development of Cryogenic Detectors for Neutrinoless Double Beta Decay Searches with CUORE and CUPID. Applied Sciences. 2021; 11(4):1606. https://doi.org/10.3390/app11041606
Chicago/Turabian StyleBeretta, Mattia, and Lorenzo Pagnanini. 2021. "Development of Cryogenic Detectors for Neutrinoless Double Beta Decay Searches with CUORE and CUPID" Applied Sciences 11, no. 4: 1606. https://doi.org/10.3390/app11041606
APA StyleBeretta, M., & Pagnanini, L. (2021). Development of Cryogenic Detectors for Neutrinoless Double Beta Decay Searches with CUORE and CUPID. Applied Sciences, 11(4), 1606. https://doi.org/10.3390/app11041606