Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Method
3. Results and Discussion
4. Conclusions
- (1)
- EDTA can extract Ca from the solution and inhibit Ca interference during zeolite synthesis by Ca masking.
- (2)
- Hydroxysodalite, zeolite-P, and zeolite-A can be synthesized from PSA using an alkali reaction with EDTA, and the main zeolite phase can be adjusted by the addition of EDTA.
- (3)
- A product with a high CEC, which has a high zeolite-A content, can be obtained.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrer, R.M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Academic Press: London, UK, 1978; pp. 1–22. [Google Scholar]
- Gottardi, G.; Galli, E. Natural Zeolites; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- McCusker, L.B.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Kurniawan, T.; Nuryoto, N.; Firdaus, M.A. Zeolite for agriculture intensification and catalyst in Agroindustry. World Chem. Eng. J. 2019, 3, 14–23. [Google Scholar]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry and Use; John Wiley&Sons: New York, NY, USA, 1974. [Google Scholar]
- Colella, C.; Mumpton, F.A. Natural Zeolites for the Third Millennium; International Committee on Natural Zeolites—ICNZ: Napoli, Italy, 2000. [Google Scholar]
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef]
- Pan, M.; Zheng, J.; Liu, Y.; Ning, W.; Tian, H.; Li, R. Construction and practical application of a novel zeolite catalyst for hierarchically cracking of heavy oil. J. Catal. 2019, 369, 72–85. [Google Scholar] [CrossRef]
- Adamaref, S.; An, W.; Jarligo, M.O.; Kuznicki, T.; Kuznicki, S.M. Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening. Water Sci. Technol. 2014, 70, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Tauanova, Z.; Tsakiridis, P.E.; Mikhalovsky, S.V.; Inglezakis, V.J. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J. Environ. Manag. 2018, 224, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar- modified zeolite. Ecotoxicol. Environ. Saf. 2019, 174, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, K.; Matsui, M.; Mizukami, F. Applications of zeolite inorganic composites in biotechnology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2005, 67, 306–311. [Google Scholar] [CrossRef]
- Montalvo, S.; Guerrero, L.; Borja, R.; Sanchez, E.; Milan, Z.; Cortes, I.; De La Rubia, M.A. Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci. 2012, 58, 125–133. [Google Scholar] [CrossRef]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 5, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Milenkovic, J.; Ivankovic, T.; Rajic, N. Antibacterial activity of heavy metal-loaded natural zeolite. J. Hazard Mater. 2012, 201, 260–264. [Google Scholar] [CrossRef]
- Tavolaro, P.; Catalano, S.; Martino, G.; Tavolaro, A. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability. Appl. Surf. Sci. 2016, 380, 135–140. [Google Scholar] [CrossRef]
- Stylianou, M.A. Natural zeolites in medicine. In Handbook of Natural Zeolites; Inglezakis, V.J., Zorpas, A.A., Eds.; Bentham Science Publishers: Sarja, United Arab Emirates, 2012; pp. 317–334. [Google Scholar]
- Kraljevic-Pavelic, S.; Simovic-Medica, J.; Gumbarevic, D.; Filosević, A.; Przulj, N.; Pavelic, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Barrer, R.M.; Beaumont, R.; Colella, C. Chemistry of soil minerals. Part XIV. Action of some basic solution on metakaolinite and kaolinite. J. Chem. Soc. Dalton Trans. 1974, 9, 934–941. [Google Scholar] [CrossRef]
- Ruiz, R.; Banco, C.; Pesquera, C.; Gonzalez, F.; Benito, I.; Lopez, J.L. Zeolitization of a bentonite and its application to the removal of ammonium ion from wastewater. Appl. Clay Sci. 1997, 12, 73–83. [Google Scholar] [CrossRef]
- Baccouche, A.; Srasra, E.; Maaoui, M.E. Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite. Appl. Clay Sci. 1998, 13, 255–273. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Synthesis of sodium zeolites from a natural halloysite. Phys. Chem. Miner. 2001, 28, 719–728. [Google Scholar] [CrossRef]
- Boukadir, D.; Bettahar, N.; Derriche, Z. Synthesis of zeolites 4A and HS from natural materials. Annu. Chim. Sci. Mater. 2002, 27, 1–13. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Yang, G.C.C.; Yang, T.-Y. Synthesis of zeolites from municipal incinerator fly ash. J. Hazard. Mater. 1998, 62, 75–89. [Google Scholar] [CrossRef]
- Wajima, T.; Ikegami, Y. Synthesis of zeolitic materials from waste porcelain at low temperature via a two-step alkali conversion. Ceram. Int. 2007, 33, 1269–1274. [Google Scholar] [CrossRef]
- Wajima, T. Synthesis of zeolitic material from green tuff stone cake and its adsorption properties of silver (I) from aqueous solution. Microporous Mesoporous Mater. 2016, 233, 154–162. [Google Scholar] [CrossRef]
- Querol, X.; Umaña, J.C.; Plana, F.; Alastuey, A.; López-Solar, A.; Medinaceli, A.; Valero, A.; Domingo, M.J.; Gracia-Rojo, E. Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel 2001, 80, 857–865. [Google Scholar] [CrossRef]
- Sigemoto, N.; Hayashi, H.; Miyamura, K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. J. Mater. Sci. 1993, 28, 4781–4786. [Google Scholar] [CrossRef]
- Hollman, G.G.; Steenbruggen, G.; Janssen-Jurkovicova, M. A two-step process for the synthesis of zeolites from coal fly ash. Fuel 1999, 78, 1225–1230. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Effect of alkali species on synthesis of K-F zeolitic materials from paper sludge ash for soil amendment. Chem. Eng. J. 2012, 207, 906–912. [Google Scholar] [CrossRef]
- Wajima, T.; Kiguchi, O.; Sugawara, K.; Sugawara, T. Synthesis of zeolite-A using silica from rice husk ash. J. Chem. Eng. Jpn. 2009, 42, S61–S66. [Google Scholar] [CrossRef]
- Wajima, T.; Shimizu, T.; Ikegami, Y. Synthesis of zeolites from paper sludge ash and their ability to simultaneously remove NH4+ and PO43−. J. Environ. Sci. Health A 2007, 42, 345–350. [Google Scholar] [CrossRef]
- Monte, M.C.; Fuente, E.; Blanco, A.; Negro, C. Waste management from pulp and paper production in the European Union. Waste Manag. 2009, 29, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, N.; Ujike, I.; Kawai, K.; Kawaguchi, T.; Yasuhara, H.; Nagae, T. Performance evaluation of low carbon concrete using paper sludge ash. J. MMIJ 2017, 133, 132–139. [Google Scholar] [CrossRef]
- Jang, H.; Lim, Y.T.; Kang, J.H.; So, S.; So, H. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Constr. Build. Mater. 2018, 166, 257–270. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Influence of industrial by-product and waste paper sludge ash on properties of recycles aggregate concrete. J. Clean. Prod. 2019, 214, 403–418. [Google Scholar] [CrossRef]
- Mavroulidou, M. Use of waste paper sludge ash as a calcium-based stabilizer for clay soils. Waste Manag. Res. 2018, 36, 1066–1072. [Google Scholar] [CrossRef]
- Mun, S.P.; Ahn, B.J. Chemical conversion of paper sludge incineration ash into synthetic zeolite. J. Ind. Eng. Chem. 2001, 7, 292–298. [Google Scholar]
- Coleman, N.J.; Brassington, D.S. Synthesis of Al-substituted 11Å tobermorite from newsprint recycling residue: A feasibility study. Mater. Res. Bull. 2003, 38, 485–497. [Google Scholar] [CrossRef]
- Belviso, C. State-of-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Koshy, N.; Singh, D.N. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 2016, 4, 1460–1472. [Google Scholar] [CrossRef]
- Lee, C.-H.; Park, S.-W.; Kim, S.-S. Breakthrough analysis of carbon dioxide adsorption on zeolite synthesized from coal fly ash. Korean J. Chem. Eng. 2014, 31, 179–187. [Google Scholar] [CrossRef]
- Wajima, T.; Ishimoto, H.; Kuzawa, K.; Ito, K.; Tamada, O.; Gunter, M.E.; Rakovan, J.F. Material conversion from paper sludge ash in NaOH, KOH, and LiOH solutions. Am. Mineral. 2007, 92, 1105–1111. [Google Scholar] [CrossRef]
- Wajima, T.; Sugawara, K. Material conversion from various incinerated ashes using alkali fusion method. Int. J. Soc. Mater. Eng. Resour. 2010, 17, 47–52. [Google Scholar] [CrossRef][Green Version]
- Wajima, T.; Shimizu, T.; Ikegami, Y. Zeolite synthesis from paper sludge ash with addition of diatomite. J. Chem. Technol. Biotechnol. 2008, 83, 921–927. [Google Scholar] [CrossRef]
- Catalfamo, P.; Patane, G.; Primerano, P.; Pasquale, S.D.; Corigliano, F. The presence of calcium in the hydrothermal conversion of amorphous aluminosilicates into zeolites: Interference and removal. Mater. Eng. 1994, 5, 159–173. [Google Scholar]
- Wajima, T.; Ikegami, Y. Zeolite synthesis from paper sludge ash via acid leaching. Chem. Eng. Commun. 2008, 195, 305–315. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Removal of Ca from paper sludge ash by acid leaching and synthesis of high cation exchange capacity zeolite material. Int. J. Soc. Mater. Eng. Resour. 2011, 18, 7–10. [Google Scholar] [CrossRef][Green Version]
- Wajima, T. Effects of step-wise acid leaching with HCl on synthesis of zeolitic materials from paper sludge ash. Minerals 2020, 10, 402. [Google Scholar] [CrossRef]
- Wajima, T.; Kuzawa, K.; Ishimoto, H.; Tamada, O.; Nishiyama, T. The synthesis of zeolite-P, Linde Type A, and hydroxysodalite zeolites from paper-sludge ash at low temperature (80 °C): Optimal ash-leaching condition for zeolite synthesis. Am. Mineral. 2004, 89, 1694–1700. [Google Scholar] [CrossRef]
- Fernandes Machado, N.R.C.; Malachini Miotto, D.M. Synthesis of Na–A and –X zeolites from oil shale ash. Fuel 2005, 84, 2289–2294. [Google Scholar] [CrossRef]
- Kato, Y.; Kakimoto, K.; Ogawa, H.; Tomai, M.; Sakamoto, E. An application of hydrothermal crystallized coal fly ashes to wastewater treatment. Kougyo-Yousui 1986, 331, 27–33. [Google Scholar]
- Ando, T.; Sakamoto, T.; Sugiyama, O.; Hiyoshi, K.; Matsue, N.; Henmi, T. Adsorption mechanism of Pb on paper sludge ash treated by NaOH hydrothermal reaction. Clay Sci. 2004, 12, 243–248. [Google Scholar] [CrossRef]
- Wajima, T.; Munakata, K. Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43− from aqueous solution. J. Environ. Sci. 2011, 23, 718–724. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdelrahman, E.A.; Aly, A.A.; Mohamed, T.Y. A facile synthesis of mordenite zeolite nanostructures for efficient bleaching of crude soybean oil and removal of methylene blue dye from aqueous media. J. Mol. Liq. 2017, 248, 302–313. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Abdelrahman, E.A. Hydrothermal tuning of the morphology and crystalline size of zeolite nanostructures for simultaneous adsorption and photocatalytic degradation of methylene blue dye. J. Mol. Liq. 2017, 242, 364–374. [Google Scholar] [CrossRef]
- Abdelrahman, E.A. Synthesis of zeolite nanostructures from waste aluminium cans for efficient removal of malachite green gye from aqueous media. J. Mol. Liq. 2018, 253, 72–82. [Google Scholar] [CrossRef]
- Murayama, N.; Yamamoto, H.; Shibata, J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 2002, 64, 1–17. [Google Scholar] [CrossRef]
Oxide (wt.%) | PSA | Without 1 M EDTA | With 1 M EDTA | ||||
---|---|---|---|---|---|---|---|
80 °C | 120 °C | 160 °C | 80 °C | 120 °C | 160 °C | ||
SiO2 | 28.1 | 31.2 | 29.0 | 28.7 | 41.3 | 46.2 | 45.1 |
Al2O3 | 18.5 | 12.1 | 13.0 | 13.1 | 24.2 | 25.8 | 24.7 |
CaO | 42.6 | 46.4 | 47.3 | 47.2 | 19.6 | 11.7 | 13.3 |
MgO | 4.0 | 3.5 | 3.5 | 3.9 | 5.1 | 5.3 | 5.1 |
Fe2O3 | 1.6 | 1.9 | 1.9 | 1.9 | 2.8 | 3.0 | 3.0 |
TiO2 | 2.7 | 3.0 | 3.1 | 3.1 | 4.5 | 4.8 | 4.8 |
Others | 2.5 | 1.9 | 2.2 | 2.1 | 2.5 | 3.2 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wajima, T. Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Appl. Sci. 2021, 11, 11231. https://doi.org/10.3390/app112311231
Wajima T. Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Applied Sciences. 2021; 11(23):11231. https://doi.org/10.3390/app112311231
Chicago/Turabian StyleWajima, Takaaki. 2021. "Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA" Applied Sciences 11, no. 23: 11231. https://doi.org/10.3390/app112311231
APA StyleWajima, T. (2021). Synthesis of Zeolitic Material with High Cation Exchange Capacity from Paper Sludge Ash Using EDTA. Applied Sciences, 11(23), 11231. https://doi.org/10.3390/app112311231