Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets
Abstract
:1. Introduction
- Data acquisition, signal processing, conventional feature extraction, and feature selection algorithms as well as the proposed method are introduced in Section 2.
- The data visualizations and results are shown in Section 3.
- Discussion and further explanation are in Section 4.
- The conclusion is provided in Section 5.
2. Materials and Methods
2.1. Data Acquisition of Self-Acquired Dataset (Dataset 1)
2.2. BCI Competition Datasset (Dataset 2)
- Firstly, the data acquisition paradigms are slightly different in terms of timing.
- Secondly, the number of measurements of the self-acquired dataset are more and occurred on different days while there is only one measurement for each subject in BCI Competition. That results in a different number of trials for each subject and possibly affects the outcomes.
2.3. Signal Pre-Processing
2.4. Common Spatial Pattern
2.5. Fisher’s Ratio
2.6. Minimum-Redundancy-Maximum-Relevance (mRmR)
2.7. Proposed Framework
2.8. Evaluation
- FBCSP (without feature selection): this method has 17 filter banks, ranging from 4–40 Hz, a 4 Hz bandwidth, 2 Hz overlapping, and the number of spatial filters m is three.
- DFBCSP—Fisher: This method has 17 filter banks, ranging from 4–40 Hz, a 4 Hz bandwidth, 2 Hz overlapping and the number of spatial filters m is three Fisher’s ratio is used for band selection.
- DFBCSP—mRmR: This method has 17 filter banks, ranging from 4–40 Hz, a 4 Hz bandwidth, 2 Hz overlapping, and the number of spatial filters m is three. mRmR is used for band selection, which could have a maximum of six filter banks.
- Proposed method (DFBCSP—FmRmR): t\This method has 17 filter banks, ranging from 4–40 Hz, a 4 Hz bandwidth, 2 Hz overlapping, and the number of spatial filters m is three. Both Fisher’s ratio and mRmR are used for band selection, which can be carried out without manual screening. The selected bands are varied after each loop and can be up to six filter banks.
3. Results
3.1. ROC and AUC
3.2. Accuracy and F1-Score of BCI Competition’s Dataset
3.3. Accuracy and F1-Score of Self-Acquired Dataset
4. Discussion
- Propose a novel and reliable framework for motor imagery tasks based on spatial filters, automatic feature selection, and traditional classifier
- Evaluate the proposed methods on both self-acquired dataset and a BCI Competition dataset in terms of accuracy, F1-score, and ROC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wolpaw, J.R.; Wolpaw, E.W. Brain–Computer Interfaces: Something New under the Sun. In Brain–Computer Interfaces: Principles and Practice; Oxford University Press (OUP): Oxford, UK, 2012; pp. 3–12. [Google Scholar]
- Donchin, E.; Spencer, K.; Wijesinghe, R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 2000, 8, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nam, C.S.; Shadden, B.B.; Johnson, S.L. A P300-based brain–computer interface: Effects of interface type and screen size. Int. J. Hum. Comput. Interact. 2010, 27, 52–68. [Google Scholar] [CrossRef]
- Middendorf, M.; McMillan, G.; Calhoun, G.; Jones, K. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng. 2000, 8, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katona, J.; Peter, D.; Ujbanyi, T.; Kovari, A. Control of incoming calls by a windows phone based brain computer interface. In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 19–21 November 2014; pp. 121–125. [Google Scholar]
- Katona, J.; Kovari, A. EEG-based computer control interface for brain-machine interaction. Int. J. Online Biomed. Eng. 2015, 11, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Saker, M.; Rihana, S. Platform for EEG signal processing for motor imagery—Application Brain Computer Interface. In Proceedings of the 2013 2nd International Conference on Advances in Biomedical Engineering, Tripoli, Lebanon, 11–13 September 2013; pp. 30–33. [Google Scholar]
- Pfurtscheller, G.; da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Neuper, C.; Müller-Putz, G.R.; Scherer, R.; Pfurtscheller, G. Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog. Brain Res. 2006, 159, 393–409. [Google Scholar] [PubMed]
- Neuper, C.; Scherer, R.; Wriessnegger, S.; Pfurtscheller, G. Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin. Neurophysiol. 2009, 120, 239–247. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Flotzinger, D.; Pregenzer, M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 642–651. [Google Scholar] [CrossRef]
- Neuper, C.; Pfurtscheller, G. 134 ERD/ERS based brain computer interface (BCI): Effects of motor imagery on sensorimotor rhythms. Int. J. Psychophysiol. 1998, 30, 53–54. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, Y.-S. Application of Continuous Wavelet Transform and Convolutional Neural Network in Decoding Motor Imagery Brain-Computer Interface. Entropy 2019, 21, 1199. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D.; Xu, G.; Li, H.; Zeng, H. Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification. IEEE Access 2018, 7, 6084–6093. [Google Scholar] [CrossRef]
- Srinivasan, R. Methods to improve the spatial resolution of EEG. Int. J. Bioelectromagn. 1999, 1, 102–111. [Google Scholar]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing Spatial Filters by Minimizing Within-Class Dissimilarities in Electroencephalogram-Based Brain–Computer Interface. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 610–619. [Google Scholar] [CrossRef]
- Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R.; Gassert, R. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG. J. Neural Eng. 2019, 16, 016019. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Liu, S.; Huang, G.; Zhang, Z.; Huang, K. The Recognition of Driving Action Based on EEG Signals Using Wavelet-CSP Algorithm. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018. [Google Scholar]
- Aghaei, A.S.; Mahanta, M.S.; Plataniotis, K. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems. IEEE Trans. Biomed. Eng. 2015, 63, 15–29. [Google Scholar] [CrossRef]
- Yuksel, A.; Olmez, T. Filter Bank Common Spatio-Spectral Patterns for Motor Imagery Classification. In Proceedings of the Lecture Notes in Computer Science, Porto, Portugal, 5–8 September 2016; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2016; pp. 69–84. [Google Scholar]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Institute of Electrical and Electronics Engineers (IEEE), Hong Kong, China, 1–8 June 2008. [Google Scholar]
- Thomas, K.P.; Guan, C.; Lau, C.T.; Vinod, A.P.; Ang, K.K. A New Discriminative Common Spatial Pattern Method for Motor Imagery Brain–Computer Interfaces. IEEE Trans. Biomed. Eng. 2009, 56, 2730–2733. [Google Scholar] [CrossRef] [PubMed]
- Park, G.-H.; Lee, Y.-R.; Kim, H.-N. Improved Filter Selection Method for Filter Bank Common Spatial Pattern for EEG-Based BCI Systems. Int. J. Electron. Electr. Eng. 2014, 2, 101–105. [Google Scholar] [CrossRef]
- Wu, F.; Gong, A.; Li, H.; Zhao, L.; Zhang, W.; Fu, Y. A New Subject-Specific Discriminative and Multi-Scale Filter Bank Tangent Space Mapping Method for Recognition of Multiclass Motor Imagery. Front. Hum. Neurosci. 2021, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, A. A new parameter tuning approach for enhanced motor imagery EEG signal classification. Med. Biol. Eng. Comput. 2018, 56, 1861–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Y.; Zhou, T.; Yao, L.; Zhou, G.; Wang, X.; Zhang, Y. Multi-View Multi-scale optimization of feature representation for EEG classification improvement. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2589–2597. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, T.; Wu, W.; Xie, H.; Zhu, H.; Zhou, G.; Cichocki, A. Improving EEG decoding via clustering-based multitask feature learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Z.; Zhang, B.; Feng, B.; Yu, T.; Li, Z. The CSP-based new features plus non-convex log sparse feature selection for motor imagery EEG classification. Sensors 2020, 20, 4749. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Hussain, A.; Lal, S.; Guesgen, H. A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors 2021, 21, 2173. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs. Pattern Recognit. 2012, 45, 2137–2144. [Google Scholar] [CrossRef]
- Rakshit, P.; Bhattacharyya, S.; Konar, A.; Khasnobish, A.; Tibarewala, D.N.; Janarthanan, R. Artificial Bee Colony Based Feature Selection for Motor Imagery EEG Data. In Proceedings of the Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 127–138. [Google Scholar]
- Baig, M.Z.; Aslam, N.; Shum, H.P.; Zhang, L. Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery EEG. Expert Syst. Appl. 2017, 90, 184–195. [Google Scholar] [CrossRef]
- Atyabi, A.; Shic, F.; Naples, A. Mixture of autoregressive modeling orders and its implication on single trial EEG classification. Expert Syst. Appl. 2016, 65, 164–180. [Google Scholar] [CrossRef] [Green Version]
- Sreeja, S.; Samanta, D.; Mitra, P.; Sarma, M. Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach. Jordanian J. Comput. Inf. Technol. 2018, 4, 80. [Google Scholar] [CrossRef]
- Wang, J.; Xue, F.; Li, H. Simultaneous channel and feature selection of fused EEG features based on sparse group lasso. BioMed Res. Int. 2015, 2015, 703768. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guan, C.; Zhang, H.; Ang, K.K. A Unified fisher’s ratio learning method for spatial filter optimization. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2727–2737. [Google Scholar] [CrossRef]
- Park, Y.; Chung, W. Selective Feature generation method based on time domain parameters and correlation coefficients for filter-bank-CSP BCI systems. Sensors 2019, 19, 3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Sharma, A.; Tsunoda, T. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinform. 2017, 18, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mamun, K.; Sharma, A. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput. Biol. Med. 2017, 91, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Khasnobish, A.; Chatterjee, S.; Konar, A.; Tibarewala, D. Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. In Proceedings of the 2010 International Conference on Systems in Medicine and Biology, Kharagpur, India, 16–18 December 2010. [Google Scholar]
- Singla, S.; Garsha, S.N.; Chatterjee, S. Characterization of classifier performance on left and right limb motor imagery using support vector machine classification of EEG signal for left and right limb movement. In Proceedings of the 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), Rajpura, India, 14–16 October 2016. [Google Scholar]
- He, L.; Hu, D.; Wan, M.; Wen, Y.; Von Deneen, K.M.; Zhou, M. Common Bayesian Network for Classification of EEG-Based Multiclass Motor Imagery BCI. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 843–854. [Google Scholar] [CrossRef]
- Wu, H.; Niu, Y.; Li, F.; Li, Y.; Fu, B.; Shi, G.; Dong, M. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification. Front. Neurosci. 2019, 13, 1275. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Taran, S.; Bajaj, V.; Sengur, A. Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens. J. 2019, 19, 4494–4500. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, L.; Zhang, Z.; Gong, X.; Sun, Y.; Wang, H. Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr. Comput. Pract. Exp. 2018, 30, e4413. [Google Scholar] [CrossRef]
- Zhu, X.; Li, P.; Li, C.; Yao, D.; Zhang, R.; Xu, P. Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomed. Signal Process. Control. 2019, 49, 396–403. [Google Scholar] [CrossRef]
- Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors 2019, 19, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Paliwal, K.K. Rotational Linear Discriminant Analysis Technique for Dimensionality Reduction. IEEE Trans. Knowl. Data Eng. 2008, 20, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Paliwal, K.K. A two-stage linear discriminant analysis for face-recognition. Pattern Recognit. Lett. 2012, 33, 1157–1162. [Google Scholar] [CrossRef]
- Sharma, A.; Paliwal, K.K.; Imoto, S.; Miyano, S. A feature selection method using improved regularized linear discriminant analysis. Mach. Vis. Appl. 2014, 25, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Klem, G.H.; Lüders, H.O.; Jasper, H.H.; Elger, C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 370–375. [Google Scholar]
- Cinar, E.; Sahin, F. New classification techniques for electroencephalogram (EEG) signals and a real-time EEG control of a robot. Neural Comput. Appl. 2011, 22, 29–39. [Google Scholar] [CrossRef]
- Kaiser, V.; Kreilinger, A.; Müller-Putz, G.R.; Neuper, C. First steps toward a motor imagery based stroke BCI: New strategy to set up a classifier. Front. Neurosci. 2011, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, B.Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G.R.; Neuper, C.; Pfurtscheller, G. Toward a hybrid brain–computer interface based on imagined movement and visual attention. J. Neural Eng. 2010, 7, 026007. [Google Scholar] [CrossRef] [PubMed]
- Horki, P.; Solis-Escalante, T.; Neuper, C.; Müller-Putz, G. Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med. Biol. Eng. Comput. 2011, 49, 567–577. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Leeb, R.; Slater, M. Cardiac responses induced during thought-based control of a virtual environment. Int. J. Psychophysiol. 2006, 62, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A.; Pfurtscheller, G. BCI Competition 2008–Graz Data Set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces); Graz University of Technology: Graz, Austria, 2008. [Google Scholar]
- Raza, H.; Cecotti, H.; Prasad, G. Optimising frequency band selection with forward-addition and backward-elimination algorithms in EEG-based brain-computer interfaces. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015. [Google Scholar]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Jo, I.; Lee, S.; Oh, S. Improved Measures of Redundancy and Relevance for mRMR Feature Selection. Computers 2019, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface. J. Neurosci. Methods 2015, 255, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Radman, M.; Chaibakhsh, A.; Nariman-Zadeh, N.; He, H. Feature fusion for improving performance of motor imagery brain-computer interface system. Biomed. Signal Process. Control. 2021, 68, 102763. [Google Scholar] [CrossRef]
- Gupta, A.; Agrawal, R.K.; Kirar, J.S.; Andreu-Perez, J.; Ding, W.-P.; Lin, C.-T.; Prasad, M. On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 3080–3092. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Pfurtscheller, G.; Linortner, P.; Winkler, R.; Korisek, G.; Müller-Putz, G. Discrimination of Motor Imagery-Induced EEG Patterns in Patients with Complete Spinal Cord Injury. Comput. Intell. Neurosci. 2009, 2009, 104180. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wang, J.; Xu, R.; Xu, K. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification. J. Neurosci. Methods 2019, 323, 98–107. [Google Scholar] [CrossRef]
- Molla, M.K.I.; Al Shiam, A.; Islam, M.R.; Tanaka, T. Discriminative feature selection-based motor imagery classification using EEG Signal. IEEE Access 2020, 8, 98255–98265. [Google Scholar] [CrossRef]
- Thompson, M.C. Critiquing the Concept of BCI Illiteracy. Sci. Eng. Ethic 2018, 25, 1217–1233. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Da Silva, F.L. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 2006, 31, 153–159. [Google Scholar] [CrossRef] [PubMed]
Subject | LH-RH | |||||||
---|---|---|---|---|---|---|---|---|
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 71.01 | 0.7 | 76.09 | 0.76 | 77.54 | 0.78 | 73.91 | 0.74 |
02 | 56.62 | 0.54 | 61.76 | 0.62 | 54.41 | 0.49 | 61.03 | 0.57 |
03 | 72.26 | 0.74 | 92.7 | 0.93 | 88.32 | 0.89 | 90.51 | 0.91 |
04 | 50.59 | 0.45 | 51.76 | 0.44 | 63.53 | 0.61 | 62.35 | 0.57 |
05 | 57.36 | 0.57 | 52.71 | 0.51 | 61.24 | 0.58 | 51.94 | 0.5 |
06 | 59.29 | 0.57 | 53.98 | 0.5 | 50.44 | 0.49 | 60.18 | 0.59 |
07 | 62.41 | 0.63 | 69.92 | 0.71 | 76.69 | 0.77 | 68.42 | 0.69 |
08 | 71.97 | 0.73 | 88.64 | 0.89 | 85.61 | 0.85 | 87.88 | 0.88 |
09 | 39.66 | 0.39 | 62.93 | 0.57 | 70.69 | 0.69 | 65.52 | 0.61 |
Mean ± SD | 60.13 ± 10.85 | 0.59 ± 0.12 | 67.83 ± 15.26 | 0.66 ± 0.17 | 69.83 ± 13.35 | 0.68 ± 0.15 | 69.08 ± 12.9 | 0.67 ± 0.14 |
Subject | RH-F | |||||||
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 83.21 | 0.84 | 97.08 | 0.97 | 97.81 | 0.98 | 97.08 | 0.97 |
02 | 69.63 | 0.69 | 83.7 | 0.84 | 81.48 | 0.83 | 80 | 0.81 |
03 | 85.07 | 0.86 | 94.78 | 0.95 | 96.27 | 0.96 | 97.01 | 0.97 |
04 | 55.17 | 0.54 | 56.32 | 0.59 | 57.47 | 0.55 | 55.17 | 0.57 |
05 | 44.7 | 0.47 | 53.03 | 0.54 | 50.76 | 0.51 | 63.64 | 0.64 |
06 | 55.66 | 0.58 | 61.32 | 0.64 | 62.26 | 0.67 | 65.09 | 0.69 |
07 | 74.44 | 0.74 | 87.97 | 0.88 | 87.97 | 0.87 | 89.47 | 0.89 |
08 | 58.46 | 0.58 | 86.92 | 0.88 | 83.85 | 0.84 | 90.77 | 0.91 |
09 | 58.87 | 0.58 | 72.58 | 0.73 | 77.42 | 0.77 | 69.35 | 0.72 |
Mean ± SD | 65.02 ± 13.79 | 0.65 ± 0.14 | 77.08 ± 16.77 | 0.78 ± 0.16 | 77.25 ± 16.88 | 0.78 ± 0.17 | 78.62 ± 15.77 | 0.8 ± 0.15 |
Subject | F-LH | |||||||
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 75.18 | 0.76 | 96.35 | 0.96 | 94.89 | 0.95 | 94.16 | 0.94 |
02 | 72.18 | 0.71 | 83.46 | 0.84 | 89.47 | 0.89 | 88.72 | 0.89 |
03 | 78.52 | 0.79 | 95.56 | 0.96 | 94.81 | 0.95 | 93.33 | 0.93 |
04 | 57.14 | 0.6 | 67.86 | 0.7 | 63.1 | 0.62 | 76.19 | 0.76 |
05 | 55.04 | 0.51 | 55.81 | 0.56 | 51.94 | 0.47 | 51.94 | 0.48 |
06 | 57.14 | 0.58 | 57.14 | 0.59 | 62.86 | 0.65 | 54.29 | 0.57 |
07 | 76.12 | 0.77 | 93.28 | 0.93 | 88.06 | 0.88 | 93.28 | 0.93 |
08 | 63.08 | 0.64 | 82.31 | 0.82 | 82.31 | 0.84 | 83.08 | 0.84 |
09 | 48.25 | 0.44 | 72.81 | 0.7 | 72.81 | 0.68 | 76.32 | 0.73 |
Mean ± SD | 64.74 ± 11 | 0.64 ± 0.12 | 78.29 ± 15.75 | 0.78 ± 0.15 | 77.81 ± 15.72 | 0.77 ± 0.17 | 79.03 ± 16.23 | 0.79 ± 0.17 |
Subject | LH-RH | |||||||
---|---|---|---|---|---|---|---|---|
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 92.37 | 0.92 | 95.13 | 0.95 | 95.76 | 0.96 | 95.97 | 0.96 |
02 | 80.86 | 0.81 | 79.23 | 0.79 | 81.06 | 0.81 | 81.06 | 0.81 |
03 | 49.3 | 0.49 | 52.96 | 0.55 | 54.93 | 0.58 | 53.52 | 0.56 |
04 | 78.36 | 0.78 | 78.99 | 0.79 | 77.31 | 0.77 | 76.26 | 0.77 |
05 | 71.56 | 0.69 | 73.89 | 0.71 | 76.92 | 0.75 | 73.19 | 0.69 |
06 | 67.19 | 0.66 | 65.63 | 0.66 | 70.31 | 0.7 | 64.58 | 0.65 |
07 | 69.3 | 0.69 | 73.81 | 0.75 | 74.72 | 0.76 | 76.3 | 0.77 |
08 | 70.7 | 0.71 | 71.34 | 0.71 | 72.19 | 0.72 | 64.97 | 0.65 |
09 | 44.94 | 0.44 | 49.58 | 0.51 | 45.78 | 0.45 | 47.26 | 0.45 |
10 | 69.23 | 0.69 | 69.23 | 0.7 | 61.92 | 0.61 | 68.85 | 0.7 |
11 | 96.99 | 0.97 | 97.19 | 0.97 | 96.99 | 0.97 | 96.79 | 0.97 |
12 | 68.01 | 0.68 | 68.75 | 0.69 | 68.01 | 0.69 | 70.59 | 0.7 |
13 | 89.46 | 0.89 | 89.89 | 0.9 | 90.75 | 0.91 | 90.54 | 0.91 |
14 | 72.71 | 0.73 | 75.05 | 0.75 | 74.63 | 0.75 | 70.58 | 0.71 |
15 | 61.01 | 0.61 | 53.96 | 0.54 | 58.37 | 0.59 | 54.19 | 0.55 |
16 | 81.69 | 0.82 | 84.98 | 0.85 | 84.16 | 0.84 | 81.48 | 0.81 |
Mean ± SD | 72.73 ± 14.08 | 0.72 ± 0.14 | 73.73 ± 14.09 | 0.74 ± 0.14 | 73.99 ± 14.28 | 0.74 ± 0.14 | 72.88 ± 14.42 | 0.73 ± 0.14 |
Subject | RH-F | |||||||
---|---|---|---|---|---|---|---|---|
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 87.21 | 0.87 | 83.8 | 0.84 | 86.57 | 0.86 | 85.07 | 0.85 |
02 | 85.43 | 0.86 | 80.36 | 0.81 | 87.45 | 0.88 | 83.4 | 0.84 |
03 | 49.72 | 0.49 | 49.72 | 0.46 | 50.28 | 0.46 | 49.44 | 0.47 |
04 | 69.83 | 0.7 | 71.28 | 0.72 | 72.52 | 0.72 | 70.66 | 0.71 |
05 | 76.36 | 0.76 | 73.85 | 0.73 | 78.45 | 0.78 | 77.2 | 0.77 |
06 | 82.64 | 0.82 | 87.05 | 0.87 | 86.79 | 0.87 | 85.49 | 0.86 |
07 | 67.82 | 0.68 | 67.82 | 0.68 | 67.59 | 0.67 | 67.59 | 0.69 |
08 | 93.51 | 0.93 | 91.42 | 0.92 | 93.51 | 0.94 | 88.91 | 0.89 |
09 | 51.27 | 0.5 | 45.99 | 0.47 | 48.95 | 0.49 | 47.89 | 0.47 |
10 | 67.18 | 0.67 | 66.41 | 0.64 | 69.5 | 0.7 | 64.86 | 0.64 |
11 | 92.38 | 0.92 | 89.78 | 0.9 | 88.78 | 0.89 | 86.97 | 0.87 |
12 | 74.16 | 0.74 | 81.65 | 0.82 | 80.52 | 0.81 | 78.28 | 0.78 |
13 | 99.79 | 1 | 98.94 | 0.99 | 98.72 | 0.99 | 99.79 | 1 |
14 | 72.86 | 0.73 | 75.85 | 0.76 | 71.58 | 0.71 | 70.94 | 0.71 |
15 | 65.39 | 0.66 | 65.17 | 0.66 | 62.47 | 0.64 | 59.78 | 0.62 |
16 | 89.53 | 0.9 | 91.79 | 0.92 | 90.76 | 0.91 | 84.19 | 0.85 |
Mean ± SD | 76.57 ± 14.58 | 0.76 ± 0.15 | 76.31 ± 14.9 | 0.76 ± 0.15 | 77.15 ± 14.81 | 0.77 ± 0.15 | 75.03 ± 14.48 | 0.75 ± 0.15 |
Subject | F-LH | |||||||
---|---|---|---|---|---|---|---|---|
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | |||||
Acc | F1 | Acc | F1 | Acc | F1 | Acc | F1 | |
01 | 86.94 | 0.87 | 86.51 | 0.87 | 86.51 | 0.86 | 86.3 | 0.86 |
02 | 89.61 | 0.9 | 89.21 | 0.89 | 88.19 | 0.88 | 87.58 | 0.88 |
03 | 54.29 | 0.54 | 55.68 | 0.55 | 53.46 | 0.53 | 53.19 | 0.51 |
04 | 77.62 | 0.77 | 79.71 | 0.79 | 79.08 | 0.79 | 78.45 | 0.78 |
05 | 75.62 | 0.73 | 75.62 | 0.72 | 76.3 | 0.72 | 76.52 | 0.73 |
06 | 86.79 | 0.86 | 87.31 | 0.87 | 87.31 | 0.87 | 88.6 | 0.88 |
07 | 63.82 | 0.64 | 61.29 | 0.63 | 62.44 | 0.64 | 63.82 | 0.65 |
08 | 93.53 | 0.93 | 92.9 | 0.93 | 93.11 | 0.93 | 91.65 | 0.92 |
09 | 49.58 | 0.49 | 46.85 | 0.48 | 46.64 | 0.48 | 47.27 | 0.48 |
10 | 63.71 | 0.64 | 59.85 | 0.6 | 67.95 | 0.69 | 54.44 | 0.54 |
11 | 94.18 | 0.94 | 94.98 | 0.95 | 93.78 | 0.94 | 91.97 | 0.92 |
12 | 72.32 | 0.73 | 74.17 | 0.74 | 75.65 | 0.77 | 69 | 0.7 |
13 | 98.92 | 0.99 | 99.35 | 0.99 | 99.57 | 1 | 98.28 | 0.98 |
14 | 84.71 | 0.85 | 81.53 | 0.82 | 82.38 | 0.82 | 72.82 | 0.73 |
15 | 65.1 | 0.65 | 63.53 | 0.65 | 66.22 | 0.68 | 60.85 | 0.63 |
16 | 84.8 | 0.85 | 80.08 | 0.8 | 82.55 | 0.83 | 71.66 | 0.72 |
Mean ± SD | 77.6 ± 14.83 | 0.77 ± 0.15 | 76.79 ± 15.39 | 0.77 ± 0.15 | 77.57 ± 14.88 | 0.78 ± 0.15 | 74.53 ± 15.56 | 0.74 ± 0.15 |
LH-RH | RH-F | F-LH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR | FBCSP | DFBCSP—Fisher | DFBCSP—mRmR | DFBCSP—FmRmR |
12.30 | 1.91 | 1.45 | 0.12 | 14.22 | 0.14 | 0.45 | −0.37 | 15.37 | −0.14 | −0.65 | −2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.D.; Phan Xuan, N.Y.; Pham, B.M.; Nguyen, T.-H.; Huynh, Q.-L.; Le, Q.K. Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets. Appl. Sci. 2021, 11, 10388. https://doi.org/10.3390/app112110388
Nguyen MTD, Phan Xuan NY, Pham BM, Nguyen T-H, Huynh Q-L, Le QK. Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets. Applied Sciences. 2021; 11(21):10388. https://doi.org/10.3390/app112110388
Chicago/Turabian StyleNguyen, Minh Tran Duc, Nhi Yen Phan Xuan, Bao Minh Pham, Trung-Hau Nguyen, Quang-Linh Huynh, and Quoc Khai Le. 2021. "Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets" Applied Sciences 11, no. 21: 10388. https://doi.org/10.3390/app112110388
APA StyleNguyen, M. T. D., Phan Xuan, N. Y., Pham, B. M., Nguyen, T.-H., Huynh, Q.-L., & Le, Q. K. (2021). Evaluating the Motor Imagery Classification Performance of a Double-Layered Feature Selection on Two Different-Sized Datasets. Applied Sciences, 11(21), 10388. https://doi.org/10.3390/app112110388