Enhanced Tunability of BaTixSn1−xO3 Films on Dielectric Substrate
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aspe, B.; Cissé, F.; Castel, X.; Demange, V.; Députier, S.; Ollivier, S.; Guilloux-Viry, M. KxNa1−xNbO3 perovskite thin films grown by pulsed laser deposition on R-plane sapphire for tunable microwave devices. J. Mater. Sci. 2018, 53, 13042–13052. [Google Scholar] [CrossRef]
- Aldrigo, M.; Dragoman, M.; Laudadio, E.; Iordanescu, S.; Modreanu, M.; Povey, I.M.; Mencarelli, D. Microwave applications of zirconium-doped hafnium oxide ferroelectrics: From nanoscale calculations up to experimental results. In Proceedings of the 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020; pp. 520–523. [Google Scholar]
- Crunteanu, A.; Muzzupapa, V.; Ghalem, A.; Huitema, L.; Passerieux, D.; Borderon, C.; Gundel, H.W. Characterization and Performance Analysis of BST-Based Ferroelectric Varactors in the Millimeter-Wave Domain. Crystals 2021, 11, 277. [Google Scholar] [CrossRef]
- Parsa, N.; Gasper, M.R.; Toonen, R.C.; Ivill, M.P.; Hirsch, S.G. Microwave power detection using ferroelectric thin film varactors. Integr. Ferroelectr. 2018, 192, 1–9. [Google Scholar] [CrossRef]
- Aymen, S.; Mascot, M.; Jomni, F.; Carru, J.C. High tunability in lead-free Ba0.85Sr0.15TiO3 thick films for microwave tunable applications. Ceram. Int. 2019, 45, 23084–23088. [Google Scholar] [CrossRef]
- Vendik, O.G.; Zubko, S.P. Ferroelectrics as Constituents of Tunable Metamaterials. In Theory and Phenomena of Metamaterials; CRC Press: Boca Raton, FL, USA, 2017; p. 33-1. [Google Scholar]
- Martínez-Viviente, F.L.; Hinojosa, J. Tunable ferroelectrics for frequency agile microwave and THz devices. In Magnetic, Ferroelectric, and Multiferroic Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2018; pp. 251–264. [Google Scholar]
- Gupta, R.; Rana, L.; Sharma, A.; Freundorfer, A.P.; Sayer, M.; Tomar, M.; Gupta, V. High frequency coplanar microwave resonator using ferroelectric thin film for wireless communication applications. Mater. Today Proc. 2018, 5, 15395–15398. [Google Scholar] [CrossRef]
- Pronin, I.P.; Kaptelov, E.Y.; Tarakanov, E.A.; Afanas’ev, V.P. Effect of annealing on the self-poled state in thin ferroelectric films. Phys. Solid State 2002, 44, 1736–1740. [Google Scholar] [CrossRef]
- Firsova, N.Y.; Mishina, E.D.; Sigov, A.S.; Senkevich, S.V.; Pronin, I.P.; Kholkin, A.; Yuzyuk, Y.I. Femtosecond infrared laser annealing of PZT films on a metal substrate. Ferroelectrics 2012, 433, 164–169. [Google Scholar] [CrossRef]
- Osipov, V.V.; Kiselev, D.A.; Kaptelov, E.Y.; Senkevich, S.V.; Pronin, I.P. Internal field and self-polarization in lead zirconate titanate thin films. Phys. Solid State 2015, 57, 1793–1799. [Google Scholar] [CrossRef]
- Afanasjev, V.P.; Chigirev, D.A.; Mukhin, N.V.; Petrov, A.A. Formation and properties of PZT-PbO thin heterophase films. Ferroelectrics 2016, 496, 170–176. [Google Scholar] [CrossRef]
- Oseev, A.; Lucklum, R.; Zubtsov, M.; Schmidt, M.P.; Mukhin, N.V.; Hirsch, S. SAW-based phononic crystal microfluidic sensor–microscale realization of velocimetry approaches for integrated analytical platform applications. Sensors 2017, 17, 2187. [Google Scholar] [CrossRef] [PubMed]
- Afanasjev, V.P.; Mukhin, N.V.; Redka, D.N.; Rudenko, M.V.; Terukov, E.I.; Oseev, A.; Hirsch, S. Surface modification of ZnO by plasma and laser treatment. Ferroelectrics 2017, 508, 124–129. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Wu, J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2020, 2, 1163–1190. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Zhong, S.; Wu, J. Highly Tunable Multifunctional BaTiO3-Based Ferroelectrics via Site Selective Doping Strategy. Acta Mater. 2021, 209, 116792. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, C.; Yu, S.; Li, L. Effect of sputtering pressure on structural and dielectric tunable properties of BaSn0.15Ti0.85O3 thin films grown by magnetron sputtering. Ceram. Int. 2018, 44, 10236–10240. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, C.; Yu, S.; Li, L. Thickness dependence of microstructure, dielectric and leakage properties of BaSn0.15Ti0.85O3 thin films. Ceram. Int. 2018, 44, 11466–11471. [Google Scholar] [CrossRef]
- Zhu, G.S.; Xu, H.R.; Li, J.J.; Wang, P.; Zhang, X.Y.; Chen, Y.D.; Yu, A.B. Study on the influence of powder size on the properties of BTS/ITO thin film by RF sputtering from powder target. Mater. Lett. 2017, 194, 90–93. [Google Scholar] [CrossRef]
- Chen, S.; Yu, S.; Zhang, B.; Zhang, J.; Ma, B.; Liu, Q.; Zhang, W. Pulsed laser deposition BTS thin films: The role of substrate temperature. Ceram. Int. 2016, 42, 9341–9346. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.; Dong, H.; Yu, S.; Li, L. High-performance flexible dielectric tunable BTS thin films prepared on copper foils. Ceram. Int. 2019, 45, 16270–16274. [Google Scholar] [CrossRef]
- Ihlefeld, J.F.; Borland, W.J.; Maria, J.P. Synthesis and properties of barium titanate stannate thin films by chemical solution deposition. J. Mater. Sci. 2008, 43, 4264–4270. [Google Scholar] [CrossRef]
- Yoon, K.H.; Park, J.H.; Jang, J.H. Solution deposition processing and electrical properties of Ba(Ti1−xSnx)O3 thin films. J. Mater. Res. 1999, 14, 2933–2939. [Google Scholar] [CrossRef]
- Song, S.; Zhai, J.; Gao, L.; Yao, X. The effect of stress on the dielectric and tunable properties of barium stannate titanate thin films. Appl. Phys. Lett. 2009, 94, 052902. [Google Scholar] [CrossRef]
- Song, S.N.; Zhai, J.W.; Yao, X. Dielectric and microwave properties of Ba (Sn0.15Ti0.85)O3 thin films. Mater. Lett. 2008, 62, 1173–1175. [Google Scholar] [CrossRef]
- Gao, L.; Zhai, J.; Song, S.; Yao, X. Crystal orientation dependence of the out-of-plane dielectric properties for barium stannate titanate thin films. Mater. Chem. Phys. 2010, 124, 192–195. [Google Scholar] [CrossRef]
- Gao, L.N.; Zhai, J.W.; Song, S.N.; Yao, X. The In-Plane Dielectric and Microwave Properties of Barium Stannate Titanate Thin Films. Ferroelectrics 2009, 388, 60–66. [Google Scholar] [CrossRef]
- Jiwei, Z.; Bo, S.; Xi, Y.; Liangying, Z. Dielectric and ferroelectric properties of Ba (Sn0.15Ti0.85)O3 thin films grown by a sol–gel process. Mater. Res. Bull. 2004, 39, 1599–1606. [Google Scholar] [CrossRef]
- Huang, H.H.; Wang, M.C.; Chen, C.Y.; Wu, N.C.; Lin, H.J. Effect of deposition parameters on the growth rate and dielectric properties of the Ba (SnxTi1−x)O3 thin films prepared by radio frequency magnetron sputtering. J. Eur. Ceram. Soc. 2006, 26, 3211–3219. [Google Scholar] [CrossRef]
- Kuo, Y.F.; Tseng, T.Y. Ba (Ti0.8Sn0.2)O3 Thin Films Prepared by Radio-Frequency Magnetron Sputtering for Dynamic Random Access Memory Applications. Electrochem. Solid State Lett. 1999, 2, 236. [Google Scholar] [CrossRef]
- Song, S.N.; Zhai, J.W.; Yao, X. Substrate effect on in-plane dielectric and microwave properties of Ba(Sn0.15Ti0.85)O3 thin films. Mater. Res. Bull. 2008, 43, 2374–2379. [Google Scholar] [CrossRef]
- Song, S.N.; Zhai, J.W.; Gao, L.N.; Yao, X.; Hung, T.F.; Xu, Z.K. Enhanced electric field tunable dielectric properties of Ba(Sn0.15Ti0.85)O3 thin films. J. Appl. Phys. 2008, 104, 096107. [Google Scholar] [CrossRef]
- Halder, S.; Victor, P.; Laha, A.; Bhattacharya, S.; Krupanidhi, S.B.; Agarwal, G.; Singh, A.K. Pulsed excimer laser ablation growth and characterization of Ba (Sn0.1Ti0.9)O3 thin films. Solid State Commun. 2002, 121, 329–332. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Zlygostov, M.V.; Gagarin, A.G.; Altynnikov, A.G.; Sapego, E.N. Planar Capacitive Structures Based on Ferroelectric Barium Titanate–Stannate Films on Sapphire for Microwave Applications. Tech. Phys. Lett. 2019, 45, 639–642. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Stozharov, V.M.; Altynnikov, A.G.; Gagarin, A.G.; Razumov, S.V.; Kaptelov, E.Y.; Kozyrev, A.B. High tunable BaSnxTi1-xO3 thin films for microwave applications. Integr. Ferroelectr. 2016, 173, 140–146. [Google Scholar] [CrossRef]
- Song, S.; Gao, L.; Zhai, J.; Yao, X.; Cheng, Z. Crystal orientation dependence of the in-plane dielectric properties for Ba(Sn0.15Ti0.85)O3 thin films. Appl. Surf. Sci. 2008, 254, 5120–5123. [Google Scholar] [CrossRef]
- Kozyrev, A.B.; Keis, V.N.; Koepf, G.; Yandrofski, R.; Soldatenkov, O.I.; Dudin, K.A.; Dovgan, D.P. Procedure of microwave investigations of ferroelectric films and tunable microwave devices based on ferroelectric films. Microelectron. Eng. 1995, 29, 257–260. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Razumov, S.V.; Gagarin, A.G.; Altynnikov, A.G.; Stozharov, V.M.; Kaptelov, E.Y.; Pronin, I.P. The structure and dielectric properties of thin barium zirconate titanate films obtained by RF magnetron sputtering. Tech. Phys. Lett. 2016, 42, 143–145. [Google Scholar] [CrossRef]
- Shibuya, K.; Mi, S.; Jia, C.L.; Meuffels, P.; Dittmann, R. Sr2TiO4 layered perovskite thin films grown by pulsed laser deposition. Appl. Phys. Lett. 2008, 92, 241918. [Google Scholar] [CrossRef][Green Version]
- Lotnyk, A.; Senz, S.; Hesse, D. Thin-film solid-state reactions of solid BaCO3 and BaO vapor with (110) rutile substrates. Acta Mater. 2007, 55, 2671–2681. [Google Scholar] [CrossRef]
- Lotnyk, A.; Senz, S.; Hesse, D. Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions. Solid State Ion. 2006, 177, 429–436. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Al’myashev, V.I.; Razumov, S.V.; Gaidukov, M.M.; Gagarin, A.G.; Altynnikov, A.G.; Kozyrev, A.B. Structural properties of barium strontium titanate films grown under different technological conditions. Phys. Solid State 2015, 57, 553–557. [Google Scholar] [CrossRef]
Composition | Substrate | Construction | Tunability, % | Reference |
---|---|---|---|---|
BaTi0.85Sn0.15O3 | Pt/Si | MDM | 66 | [15] |
BaTi0.85Sn0.15O3 | Pt/Si | MDM | 65 | [16] |
BaTi0.75Sn0.25O3 | Cu | MDM | 50 | [20] |
BaTi0.85Sn0.15O3 | LaNiO3/LaAlO3 | MDM | 68 | [24] |
BaTi0.85Sn0.15O3 | LaNiO3/LaAlO3 | MDM | 43 | [22] |
BaTi0.85Sn0.15O3 | LaNiO3/SrTiO3 | MDM | 45 | [22] |
BaTi0.85Sn0.15O3 | LaNiO3/MgO | MDM | 50 | [22] |
BaTi0.85Sn0.15O3 | LaNiO3/Al2O3 | MDM | 57 | [22] |
BaTi0.85Sn0.15O3 | LaNiO3/Si | MDM | 54 | [26] |
BaTi0.85Sn0.15O3 | ITO/glass | MDM | 58 | [17] |
BaTi0.85Sn0.15O3 | Pt/Si | MDM | 72 | [18] |
BaTi0.85Sn0.15O3 | Cu | MDM | 67 | [19] |
BaTi0.85Sn0.15O3 | LaAlO3 | planar | 17 | [23] |
BaTi0.85Sn0.15O3 | MgO | planar | 15 | [29] |
BaTi0.85Sn0.15O3 | Sapphire | planar | 20 | [25] |
BaTi0.85Sn0.15O3 | LaAlO3 | planar | 46 | [34] |
BaTi0.85Sn0.15O3 | SrTiO3 | planar | 46 | [30] |
BaTi0.8Sn0.2O3 | Alumina | planar | 85 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumarkin, A.; Sapego, E.; Gagarin, A.; Senkevich, S. Enhanced Tunability of BaTixSn1−xO3 Films on Dielectric Substrate. Appl. Sci. 2021, 11, 7367. https://doi.org/10.3390/app11167367
Tumarkin A, Sapego E, Gagarin A, Senkevich S. Enhanced Tunability of BaTixSn1−xO3 Films on Dielectric Substrate. Applied Sciences. 2021; 11(16):7367. https://doi.org/10.3390/app11167367
Chicago/Turabian StyleTumarkin, Andrey, Evgeny Sapego, Alexander Gagarin, and Stanislav Senkevich. 2021. "Enhanced Tunability of BaTixSn1−xO3 Films on Dielectric Substrate" Applied Sciences 11, no. 16: 7367. https://doi.org/10.3390/app11167367
APA StyleTumarkin, A., Sapego, E., Gagarin, A., & Senkevich, S. (2021). Enhanced Tunability of BaTixSn1−xO3 Films on Dielectric Substrate. Applied Sciences, 11(16), 7367. https://doi.org/10.3390/app11167367