Accommodative Relaxation by Extending the Viewing Distance through the Simple Optical Design of a Double-Mirror System
Abstract
:1. Introduction
2. Method
2.1. Design of the Proposed Double-Mirror System
2.2. Research Subjects
2.3. Research Process
2.4. Data Analysis
3. Results
3.1. Accommodative Response and Pupil Size
3.2. Comparison of the Dynamic Accommodative Response and the Pupil Size at Different Viewing Distances
3.3. Fluctuations in Accommodation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, S.; Cheng, L.; Genevie, J.; Yuan, M. The iPhone effect: The quality of in person social interactions in the presence of mobile devices. Environ. Behav. 2016, 48, 275. [Google Scholar] [CrossRef]
- Demir, P.; Baskaran, K.; Theagarayan, B.; Gierow, P.; Sankaridurg, P.; Macedo, A.F. Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Clin. Exp. Optom. 2021, 2, 1. [Google Scholar]
- Guan, H.; Yu, N.N.; Wang, H.; Boswell, M.; Shi, Y.; Rozelle, S.; Congdon, N. Impact of various types of near work and time spent outdoors at different times of day on visual acuity and refractive error among Chinese school-going children. PLoS ONE 2019, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Gwiazda, J.; Thorn, F. Children’s refractions and visual activities in the school year and summer. Optom. Vis. Sci. 2010, 87, 406. [Google Scholar] [CrossRef] [Green Version]
- Hagen, L.A.; Gjelle, J.V.B.; Arnegard, S.; Pedersen, H.R.; Gilson, S.J.; Baraas, R.C. Prevalence and possible factors of myopia in Nnorwegian adolescents. Sci. Rep. 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Stokols, D.; Misra, S.; Runnerstrom, M.G.; Hipp, J.A. Psychology in an age of ecological crisis: From personal angst to collective action. Am. Psychol. 2009, 64, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophir, E.; Nass, C.; Wagner, A.D. Cognitive control in media multitaskers. Proc. Natl. Acad. Sci. USA 2009, 1, 15583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.Y.; Lo, C.T.; Sheu, S.J.; Lin, J.L. What factors are associated with myopia in young adults? A Survey Study in Taiwan Military Conscripts. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1026. [Google Scholar] [CrossRef] [Green Version]
- Mutti, D.O.; Mitchell, G.L.; Moeschberger, M.L.; Jones, L.A.; Zadnik, K. Parental myopia, near work, school achievement, and children’s refractive error. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3633. [Google Scholar]
- Saw, S.M.; Hong, R.Z.; Zhang, M.Z.; Fu, Z.F.; Ye, M.; Tan, D.; Chew, S.J. Near-work activity and myopia in rural and urban schoolchildren in China. J. Pediatric Ophthalmol. Strabismus 2001, 38, 149. [Google Scholar] [CrossRef]
- García-Gen, E.; Penadés, M.; Mérida, S.; Desco, C.; Araujo-Miranda, R.; Navea, A.; Bosch-Morell, F. High Myopia and the Complement System: Factor H in Myopic Maculopathy. J. Clin. Med. 2021, 10, 2600. [Google Scholar] [CrossRef]
- Aikaterini, I. Moulakaki. Assessing the accommodation response after near visual tasks using different handheld electronic devices. Arq. Bras. Oftalmol. 2017, 80, 9. [Google Scholar]
- Chu, C.A.; Rosenfield, M.; Portello, J.K. Computer Vision Syndrome: Blink Rate and Dry Eye during Hard Copy or Computer Viewing. Investig. Ophthalmol. Vis. Sci. 2010, 51, 957. [Google Scholar]
- Blehm, C.G.; Vishnu, S.; Dawson, K.; Chuang, A.; Yee, R. Ocular Surface Analysis and Treatment in Computer Vision Syndrome. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3912. [Google Scholar]
- Hayes, J.R.; Sheedy, J.E.; Stelmack, J.A.; Heaney, C.A. Computer use, symptoms, and quality of life. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2007, 84, 738. [Google Scholar] [CrossRef]
- Mazyed Alsaqr, A.; Alshareef, H.; Alhajri, F.; Abusharha, A.; Fagehi, R.; Alharbi, A.; Alanazi, S. Accommodative Response in Patients with Central Field Loss: A Matched Case-Control Study. Vision 2021, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, A.L.; Wolffsohn, J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018, 3, e000146. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, M. Computer vision syndrome (a.k.a. digital eye). Optom. Pract. 2016, 17, 1. [Google Scholar]
- Yuda, K. Training regimen involving cyclic induction of pupil constriction during far accommodation improves visual acuity in myopic children. Clin. Ophthalmol. 2010, 4, 251. [Google Scholar]
- Iwasaki, T.; Tawara, A.; Miyake, N. Reduction of asthenopia related to accommodative relaxation bymeans of far point stimuli. Acta Ophthalmol. Scand 2005, 83, 81. [Google Scholar] [CrossRef]
- LightTools. Available online: https://www.synopsys.com/optical-solutions/lighttools.html (accessed on 23 July 2021).
- Park, S.M.; Moon, B.Y.; Kim, S.Y.; Yu, D.S. Diurnal variations of amplitude of accommodation in different age groups. PLoS ONE 2019, 14, e0225754. [Google Scholar] [CrossRef] [Green Version]
Average (Standard Deviation) | p | ||
---|---|---|---|
Male (N = 16) | Female (N = 16) | ||
Age (y/o) | 20.82 ± 0.88 | 20.81 ± 1.08 | 0.99 |
Equivalent sphere (D) | 1.90 ± 1.43 | 2.17 ± 1.46 | 0.97 |
Accommodative response (D) | 1.55 ± 0.25 | 1.82 ± 0.21 | 0.08 |
Pupil size (mm) | 3.82 ± 0.50 | 3.67 ± 0.55 | 0.51 |
Accommodative Response (D) | Viewing Distance (m) | |||||
---|---|---|---|---|---|---|
0.4 | 0.6 | 0.8 | 1.2 | 1.6 | 2.285 | |
Directly seeing target | 1.69 ± 0.31 | 0.74 ± 0.22 | 0.48 ± 0.09 | 0.37 ± 0.08 | 0.14 ± 0.05 | 0.11 ± 0.04 |
Single plane mirror | 1.97 ± 0.59 | 1.20 ± 0.31 | 0.83 ± 0.16 | 0.26 ± 0.06 | 0.17 ± 0.03 | 0.16 ± 0.04 |
Double-mirror system | x | x | x | x | x | 0.11 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, S.-M.; Su, H.-R.; Lee, C.-H.; Chen, Y.-J.; Huang, S.-Y. Accommodative Relaxation by Extending the Viewing Distance through the Simple Optical Design of a Double-Mirror System. Appl. Sci. 2021, 11, 6979. https://doi.org/10.3390/app11156979
Yeh S-M, Su H-R, Lee C-H, Chen Y-J, Huang S-Y. Accommodative Relaxation by Extending the Viewing Distance through the Simple Optical Design of a Double-Mirror System. Applied Sciences. 2021; 11(15):6979. https://doi.org/10.3390/app11156979
Chicago/Turabian StyleYeh, Shang-Min, Hui-Rong Su, Chi-Hung Lee, Yu-Jung Chen, and Shuan-Yu Huang. 2021. "Accommodative Relaxation by Extending the Viewing Distance through the Simple Optical Design of a Double-Mirror System" Applied Sciences 11, no. 15: 6979. https://doi.org/10.3390/app11156979
APA StyleYeh, S.-M., Su, H.-R., Lee, C.-H., Chen, Y.-J., & Huang, S.-Y. (2021). Accommodative Relaxation by Extending the Viewing Distance through the Simple Optical Design of a Double-Mirror System. Applied Sciences, 11(15), 6979. https://doi.org/10.3390/app11156979