Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. GB Extract Preparation
2.2. Total Polyphenol and Total Anthocyanin Analysis of GB Extracts
2.3. Subjects
2.4. Study Design
2.5. Blood Sample Analysis
2.6. Dietary Nutrient Intake Analysis
2.7. Statistical Analysis
3. Results
3.1. Total Polyphenols and Total Anthocyanins of GB
3.2. Baseline Characteristics and Dietary Intake of Subjects
3.3. Glycemic-Control-Related Markers
3.4. Anthropometric Measures, Blood Pressure, Lipid Profile and Liver Function
3.5. Oxidative-Stress-Related Markers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2021, 44, S15–S33. [Google Scholar]
- DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of beta-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab. 2011, 96, 2354–2366. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.; Sicree, R.; Zimmet, P. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Su, Y.; Liu, X.-M.; Sun, Y.-M.; Jin, H.-B.; Fu, R.; Wang, Y.-Y.; Wu, Y.; Luan, Y. The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int. J. Clin. Pract. 2008, 62, 877–882. [Google Scholar] [CrossRef]
- Antoniades, C.; Shirodaria, C.; Crabtree, M.; Rinze, R.; Alp, N.; Cunnington, C.; Diesch, J.; Tousoulis, D.; Stefanadis, C.; Leeson, P.; et al. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation 2007, 116, 2851–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, A.; Bauersachs, J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr. Vasc. Pharmacol. 2008, 6, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Milman, S.; Crandall, J.P. Mechanisms of Vascular Complications in Prediabetes. Med. Clin. N. Am. 2011, 95, 309–325. [Google Scholar] [CrossRef]
- Glechner, A.; Keuchel, L.; Affengruber, L.; Titscher, V.; Sommer, I.; Matyas, N.; Wagner, G.; Kien, C.; Klerings, I.; Gartlehner, G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018, 12, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.-R.; Li, G.-W.; Hu, Y.-H.; Wang, J.-X.; Yang, W.-Y.; An, Z.-X.; Hu, Z.-X.; Lin, J.-; Xiao, J.-Z.; Cao, H.-B.; et al. Effects of Diet and Exercise in Preventing NIDDM in People with Impaired Glucose Tolerance: The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Martinez-González, M.; Bulló, M.; Ros, E. The role of diet in the prevention of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B32–B48. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Yang, C.; Wai, S.T.C.; Zhang, Y.; Portillo, M.P.; Paoli, P.; Wu, Y.; Cheang, W.S.; Liu, B.; Carpéné, C.; et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2018, 59, 830–847. [Google Scholar] [CrossRef]
- Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. Dietary intake of anthocyanins and risk of cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2018, 59, 3032–3043. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Maeda, K.; Kato, M.; Shimomura, K. Isolation of anthocyanin-related MYB gene, GbMYB2, from Gynura bicolor leaves. Plant Biotechnol. 2010, 27, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-H.; Yang, H.-C.; Chang, W.-L.; Chang, Y.-P.; Wu, C.-C.; Hsieh, S.-L. Development of beverage product from Gynura bicolor and evaluation of its antioxidant activity. Genom. Med. Biomark. Health Sci. 2012, 4, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-Y.; Liu, Y.-L.; Lin, B.-F.; Hsiao, C.-C.; Tsai, S.-J. Antioxidant, Antimutagenic and Immunomodulatory Potentials of Gynura Bicolar and Amaranthus Gangetcaue. Taiwan J. Agric. Chem. Food Sci. 2004, 42, 231–241. [Google Scholar]
- Wu, C.-C.; Lii, C.-K.; Liu, K.-L.; Chen, P.-Y.; Hsieh, S.-L. Antiinflammatory Activity of Gynura bicolor (紅鳳菜 Hóng Fèng Cài) Ether Extract Through Inhibits Nuclear Factor Kappa B Activation. J. Tradit. Complement. Med. 2013, 3, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-L.; Ren, B.-R.; Zhuo, M.-; Hu, Y.; Lu, C.-G.; Wu, J.-L.; Chen, J.; Sun, S. The Anti-Hyperglycemic Effect of Plants in Genus Gynura Cass. Am. J. Chin. Med. 2009, 37, 961–966. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Hosseinian, F.; Li, W.; Beta, T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008, 109, 916–924. [Google Scholar] [CrossRef]
- Serafini, M.; Maiani, G.; Ferro-Luzzi, A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr. 1998, 128, 1003–1007. [Google Scholar] [CrossRef]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Mendrick, D.L.; Diehl, A.M.; Topor, L.S.; Dietert, R.R.; Will, Y.; A La Merrill, M.; Bouret, S.; Varma, V.; Hastings, K.L.; Schug, T.T.; et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol. Sci. 2018, 162, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabák, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimäki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the Whitehall II study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef] [Green Version]
- Ford, E.S.; Li, C.; Sniderman, A. Temporal changes in concentrations of lipids and apolipoprotein B among adults with diagnosed and undiagnosed diabetes, prediabetes, and normoglycemia: Findings from the National Health and Nutrition Examination Survey 1988–1991 to 2005–2008. Cardiovasc. Diabetol. 2013, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Ascaso, J.F.; Pardo, S.; Real, J.T.; Lorente, R.I.; Priego, A.; Carmena, R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care 2003, 26, 3320–3325. [Google Scholar] [CrossRef] [Green Version]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis Model Assessment Is More Reliable Than the Fasting Glucose/Insulin Ratio and Quantitative Insulin Sensitivity Check Index for Assessing Insulin Resistance Among Obese Children and Adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfram, T.; Ismail-Beigi, F. Efficacy of High-Fiber Diets in the Management of Type 2 Diabetes Mellitus. Endocr. Pract. 2011, 17, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J. A Comprehensive Review on Metabolic Syndrome. Cardiol. Res. Pract. 2014, 2014, 943162. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Ruiz-León, A.M.; Sierra-Pérez, M.; Estruch, R.; Casas, R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 2020, 12, 2983. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; A Martinez-Gonzalez, M.; Corella, D.; Basora, J.; Ruiz-Gutierrez, V.; I Covas, M.; Fiol, M.; Gomez-Gracia, E.; López-Sabater, M.C.; Escoda, R.; et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Community Health 2009, 63, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Kobayakawa, A.; Suzuki, T.; Ikami, T.; Saito, M.; Yabe, D.; Seino, Y. Improvement of Fasting Plasma Glucose Level After Ingesting Moderate Amount of Dietary Fiber in Japanese Men With Mild Hyperglycemia and Visceral Fat Obesity. J. Diet. Suppl. 2013, 10, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Do, T.V.T.; Suhartini, W.; Mutabazi, F.; Mutukumira, T.N. Gynura bicolor DC. (Okinawa spinach): A comprehensive review on nutritional constituents, phytochemical compounds, utilization, health benefits, and toxicological evaluation. Food Res. Int. 2020, 134, 109222. [Google Scholar] [CrossRef]
- Chen, J.; Mangelinckx, S.; Lü, H.; Wang, Z.T.; Li, W.L.; De Kimpe, N. Profiling and elucidation of the phenolic compounds in the aerial parts of Gynura bicolor and G. divaricata collected from different Chinese origins. Chem. Biodivers. 2015, 12, 96–115. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [Green Version]
- Wright, O.R.; Netzel, G.A.; Sakzewski, A.R. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: The QUENCH Trial. Can. J. Physiol. Pharmacol. 2013, 91, 480–488. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ursini, F.; Maiorino, M.; Gregolin, C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 1985, 839, 62–70. [Google Scholar] [CrossRef]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 2010, 16, CR28–CR34. [Google Scholar]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.; Parikh, S.J.; Sridhar, S.; Guo, D.-H.; Bhagatwala, J.; Dong, Y.; Caldwell, R.; Mellor, A.; Caldwell, W.; Zhu, H.; et al. Cytokine profiling of young overweight and obese female African American adults with prediabetes. Cytokine 2013, 64, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, S.E.; Freese, R.; Kleemola, P.; Mutanen, M. Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol. Biomark. Prev. 2002, 11, 459–466. [Google Scholar]
Control | GB | |
---|---|---|
Sex | ||
Male (%) | 22.2 | 22.2 |
Female (%) | 77.8 | 77.8 |
Age | 57.6 ± 2.2 | 61.8 ± 2.6 |
Height (cm) | 159.9 ± 2.8 | 157.9 ± 1.5 |
Body weight (kg) | 62.6 ± 3.0 | 64.0 ± 3.1 |
BMI (kg/m2) | 24.4 ± 0.6 | 26.0 ± 1.4 |
Body fat (%) | 31.8 ± 1.5 | 32.4 ± 2.5 |
Fasting plasma glucose (mg/dL) | 111.2 ± 6.4 | 125. 0 ± 3.8 |
Fasting insulin (mU/L) | 10.6 ± 0.9 | 12.9 ± 1.3 |
HbA1c (%) | 5.79 ± 0.12 | 6.41 ± 0.17 § |
Control | GB | |||
---|---|---|---|---|
Week 0 | Week 8 | Week 0 | Week 8 | |
Energy (kcal) | 1370.3 ± 144.5 | 1382.3 ± 88.3 | 1440.2 ± 143.7 | 1391.6 ± 123.7 |
Protein (%) | 15.3 ± 1.0 | 16.2 ± 1.2 | 15.6 ± 1.0 | 17.2 ± 1.1 |
Fat (%) | 28.9 ± 3.2 | 29.9 ± 1.8 | 28.7 ± 3.1 | 28.0 ± 1.7 |
Carbohydrate (%) | 60.0 ± 3.6 | 54.1 ± 2.3 | 56.0 ± 3.3 | 55.7 ± 1.7 |
Dietary fiber (g) | 14.0 ± 1.6 | 13.0 ± 1.2 | 15.0 ± 2.3 | 20.4 ± 2.0 § |
Vitamin C (mg) | 114.38 ± 40.89 | 104.52 ± 23.17 | 120.44 ± 34.40 | 164.72 ± 44.74 |
Vitamin E (α-TE) | 3.38 ± 0.52 | 3.46 ± 0.51 | 3.66 ± 0.52 | 3.74 ± 0.66 |
Control | GB | |
---|---|---|
Fasting plasma glucose (mg/dL) | ||
Week 0 | 111.22 ± 6.43 | 125.00 ± 3.83 § |
Week 8 | 100.11 ± 2.30 | 108.22 ± 2.90 §* |
Week 12 | 101.78 ± 3.60 | 106.00 ± 3.51 * |
△0–8 week | −11.11 ± 6.04 | −16.78 ± 2.72 |
△0−12 week | −9.1 ± 18.8 | −19.8 ± 9.3 § |
△8–12 week | 2.1 ± 9.6 | −1.4 ± 8.1 |
Fasting insulin (mU/L) | ||
Week 0 | 10.60 ± 0.91 | 12.87 ± 1.32 |
Week 8 | 12.10 ± 1.61 | 9.89 ± 0.93 |
Week 12 | 8.99 ± 0.87 | 9.00 ± 1.03 * |
△0–8 week | 1.50 ± 1.30 | −2.98 ± 1.37 § |
△0–12 week | −1.30 ± 2.7 | −4.20 ± 4.8 |
△8–12 week | −2.30 ± 3.4 | −1.20 ± 3.8 |
HbA1C (%) | ||
Week 0 | 5.79 ± 0.12 | 6.41 ± 0.17 § |
Week 8 | 5.76 ± 0.11 | 6.30 ± 0.13 § |
Week 12 | 5.69 ± 0.11 | 6.14 ± 0.14 § |
△0–8 week | −0.03 ± 0.05 | −0.11 ± 0.08 |
△0–12 week | −0.10 ± 0.11 | −0.26 ± 0.28 |
△8–12 week | −0.07 ± 0.10 | −0.13 ± 0.18 |
HOMA-IR | ||
Week 0 | 2.97 ± 0.39 | 3.95 ± 0.40 |
Week 8 | 3.02 ± 0.44 | 2.63 ± 0.25 * |
Week 12 | 2.30 ± 0.27 | 2.34 ± 0.26 * |
△0–8 week | 0.05 ± 0.31 | −1.32 ± 0.42 § |
△0–12 week | −0.52 ± 0.85 | −1.52 ± 1.52 |
△8–12 week | −1.00 ± 1.59 | −0.36 ± 0.96 |
QUICKI | ||
Week 0 | 0.33 ± 0.01 | 0.31 ± 0.00 |
Week 8 | 0.33 ± 0.01 | 0.33 ± 0.00 |
Week 12 | 0.34 ± 0.01 | 0.34 ± 0.00 |
△0–8 week | −0.00 ± 0.01 | 0.02 ± 0.01 § |
△0–12 week | −0.02 ± 0.11 | −0.01 ± 0.11 |
△8–12 week | −0.02 ± 0.11 | 0.00 ± 0.11 |
Control | GB | |
---|---|---|
Body weight (kg) | ||
Week 0 | 62.56 ± 3.10 | 64.03 ± 3.10 |
Week 4 | 62.38 ± 2.67 | 64.00 ± 2.94 |
Week 8 | 62.70 ± 2.84 | 63.66 ± 3.11 |
Week 12 | 59.51 ± 1.92 | 63.31 ± 3.11 |
BMI (kg/m2) | ||
Week 0 | 24.36 ± 0.62 | 25.96 ± 1.35 |
Week 4 | 24.32 ± 0.41 | 25.94 ± 1.25 |
Week 8 | 24.41 ± 0.42 | 25.54 ± 1.17 |
Week 12 | 24.00 ± 0.61 | 25.64 ± 1.24 |
Body fat (%) | ||
Week 0 | 31.83 ± 1.46 | 32.41 ± 2.47 |
Week 4 | 30.84 ± 1.34 | 32.47 ± 2.46 |
Week 8 | 30.33 ± 1.22 | 31.38 ± 2.34 |
Week 12 | 30.88 ± 1.62 | 31.19 ± 2.34 |
Fat-free mass (kg) | ||
Week 0 | 42.82 ± 2.75 | 42.98 ± 1.81 |
Week 4 | 43.29 ± 2.51 | 42.98 ± 1.89 |
Week 8 | 43.88 ± 2.66 | 43.40 ± 1.82 |
Week 12 | 41.11 ± 1.60 | 43.29 ± 1.88 |
Waist circumference (cm) | ||
Week 0 | 85.61 ± 1.29 | 87.33 ± 3.00 |
Week 4 | 84.33 ± 1.39 | 87.56 ± 3.22 |
Week 8 | 83.00 ± 1.90 | 87.39 ± 2.48 |
Week 12 | 82.38 ± 1.29 | 84.89 ± 2.85 |
Hip circumference (cm) | ||
Week 0 | 99.61 ± 1.50 | 99.56 ± 2.57 |
Week 4 | 100.11 ± 1.56 | 101.00 ± 2.77 |
Week 8 | 98.89 ± 1.30 | 98.39 ± 2.57 |
Week 12 | 95.50 ± 1.88 | 98.44 ± 2.19 |
Waist to hip ratio | ||
Week 0 | 0.92 ± 0.01 | 0.93 ± 0.02 |
Week 4 | 0.91 ± 0.01 | 0.94 ± 0.02 |
Week 8 | 0.91 ± 0.01 | 0.93 ± 0.01 |
Week 12 | 0.91 ± 0.01 | 0.93 ± 0.01 |
Control | GB | |
---|---|---|
Systolic (mmHg) | ||
Week 0 | 122.89 ± 2.80 | 135.33 ± 5.06 |
Week 4 | 120.89 ± 5.78 | 136.78 ± 6.28 |
Week 8 | 115.22 ± 6.09 | 133.44 ± 4.19 |
Week 12 | 110.88 ± 7.18 | 120.56 ± 5.23 |
Diastolic (mmHg) | ||
Week 0 | 71.22 ± 5.17 | 78.22 ± 3.05 |
Week 4 | 71.78 ± 5.25 | 80.22 ± 3.03 |
Week 8 | 67.67 ± 4.66 | 77.11 ± 3.12 |
Week 12 | 63.25 ± 4.63 | 72.00 ± 3.54 |
Control | GB | |||||
---|---|---|---|---|---|---|
Week 0 | Week 8 | Week 12 | Week 0 | Week 8 | Week 12 | |
Blood lipid profile | ||||||
TC (mg/dL) | 204.2 ± 11.8 | 197.0 ± 11.0 | 199.4 ± 11.6 | 197.7 ± 6.5 | 199.9 ± 8.9 | 189.6 ± 10.1 |
HDL-C (mg/dL) | 58.7 ± 4.6 | 58.9 ± 5.0 | 61.4 ± 6.2 | 58.9 ± 4.2 | 56.2 ± 3.6 | 56.9 ± 3.6 |
LDL-C (mg/dL) | 136.6 ± 11.0 | 128.2 ± 9.0 | 123.1 ± 10.4 * | 131.4 ± 7.3 | 135.8 ± 7.3 | 123.7 ± 10.6 |
Liver function | ||||||
AST (IU/L) | 32.7 ± 7.3 | 22.8 ± 2.5 * | 21.9 ± 1.3 | 24.8 ± 3.6 | 23.4 ± 2.7 | 21.8 ± 3.1 |
ALT (IU/L) | 36.7 ± 11.4 | 23.6 ± 3.7 | 21.2 ± 2.4 | 32.1 ± 8.9 | 29.9 ± 6.8 | 26.2 ± 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, C.-H.; Tung, Y.-T.; Yeh, Y.-S.; Chien, Y.-W. Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes. Appl. Sci. 2021, 11, 5066. https://doi.org/10.3390/app11115066
Hsia C-H, Tung Y-T, Yeh Y-S, Chien Y-W. Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes. Applied Sciences. 2021; 11(11):5066. https://doi.org/10.3390/app11115066
Chicago/Turabian StyleHsia, Chu-Hsuan, Yu-Tang Tung, Yu-Sheng Yeh, and Yi-Wen Chien. 2021. "Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes" Applied Sciences 11, no. 11: 5066. https://doi.org/10.3390/app11115066
APA StyleHsia, C.-H., Tung, Y.-T., Yeh, Y.-S., & Chien, Y.-W. (2021). Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes. Applied Sciences, 11(11), 5066. https://doi.org/10.3390/app11115066