Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Analytical Procedures
2.2.1. Physicochemical determinations
2.2.2. Volatile Composition
2.2.3. Vibrational Spectroscopy
2.3. Semsory Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Physicochemical Analysis
3.2. Sensory Properties
3.3. FTIR-ATR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santo, D.E.; Galego, L.; Gonçalves, T.; Quintas, C. Yeast diversity in the Mediterranean strawberry tree (Arbutus unedo L.) fruits’ fermentations. Food Res. Int. 2012, 47, 45–50. [Google Scholar] [CrossRef]
- Miguel, M.; Faleiro, M.; Guerreiro, A.; Antunes, M. Arbutus unedo L.: Chemical and Biological Properties. Molecules 2014, 19, 15799–15823. [Google Scholar] [CrossRef][Green Version]
- Celikel, G.; Demirsoy, L.; Demirsoy, H. The strawberry tree (Arbutus unedo L.) selection in Turkey. Sci. Hortic. 2008, 118, 115–119. [Google Scholar] [CrossRef]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef][Green Version]
- Versini, G.; Franco, M.A. Characterisation of strawberry tree distillate (Arbutus unedo L.) produced in Sardinia. J. Commod. sci. Technol. Qual. 2011, 53, 197–206. [Google Scholar]
- Botelho, G.; Gomes, F.; Ferreira, F.M.; Caldeira, I. Influence of maturation degree of Arbutus (Arbutus unedo L.) fruits in spirit composition and quality. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 539–544. [Google Scholar]
- Cavaco, T.; Longuinho, C.; Quintas, C.; Saraiva de Carvalho, I. Chemical and Microbial Changes During the Natural Fermentation of Strawberry Tree (Arbutus unedo L.) Fruits. J. Food Biochem. 2007, 31, 715–725. [Google Scholar] [CrossRef]
- Reg. EU no 2019/787 of the European Parliament and of the Council of 17 April 2019. Off. J. Eur. Union 2019, 62, L130. [Google Scholar]
- Diário da República n.º 223/2000, Série I-A de 2000-09-26; Decreto Lei n° 238/2000 de 26 de Setembro; Imprensa Nacional: Lisboa, Portugal, 2000; pp. 5145–5147.
- Ceballos-Magaña, S.G.; Jurado, J.M.; Martín, M.J.; Pablos, F. Quantitation of Twelve Metals in Tequila and Mezcal Spirits as Authenticity Parameters. J. Agric. Food Chem. 2009, 57, 1372–1376. [Google Scholar] [CrossRef]
- Cameán, A.M.; Moreno, I.; López-Artíguez, M.; Repetto, M.; González, A.G. Differentiation of Spanish brandies according to their metal content. Talanta 2001, 54, 53–59. [Google Scholar] [CrossRef]
- Anjos, O.; Canas, S.; Gonçalves, J.C.; Caldeira, I. Development of a Spirit Drink Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Honey. Beverages 2020, 6, 38. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.N.; Gomes, P.C.d.S.; Alcarde, A.R.; Bortoletto, A.M.; Leite Neta, M.T.S.; Narain, N.; Abud, A.K.d.S.; Oliveira Júnior, A.M. Characterization and volatile profile of passion fruit spirit. Int. J. Gastron. Food Sci. 2020, 21, 100223. [Google Scholar] [CrossRef]
- Louw, L.; Malherbe, S.; Naes, T.; Lambrechts, M.; van Rensburg, P.; Nieuwoudt, H. Validation of two Napping® techniques as rapid sensory screening tools for high alcohol products. Food Qual. Prefer. 2013, 30, 192–201. [Google Scholar] [CrossRef]
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The flavour of fruit spirits and fruit liqueurs: A review. Flavour Fragr. J. 2015, 30, 197–207. [Google Scholar] [CrossRef]
- Galego, L. Traditional Algarvian Distillats and Liqueurs Historic Scientific Aspects. In Proceedings of the Traditional Food Processing and Technological Innovation in Peripheral Regions, Faro, Portugal, 26–27 May 2006; pp. 68–70. [Google Scholar]
- De Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [Google Scholar] [CrossRef]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Viriot, C.; Scalbert, A.; Lapierre, C.; Moutounet, M. Ellagitannins and lignins in aging of spirits in oak barrels. J. Agric. Food Chem. 1993, 41, 1872–1879. [Google Scholar] [CrossRef]
- Caldeira, I.; Anjos, O.; Portal, V.; Belchior, A.P.; Canas, S. Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta 2010, 660, 43–52. [Google Scholar] [CrossRef]
- Li, J.; Huang, W.; Zhao, C.; Zhang, B. A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. J. Food Eng. 2013, 116, 324–332. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Belchior, A.P. Are the furanic aldehydes ratio and phenolic aldehydes ratios reliable to assess the addition of vanillin and caramel to the aged wine spirit? Food Control 2019, 95, 77–84. [Google Scholar] [CrossRef]
- Caldeira, I.; Santos, R.; Ricardo-da-Silva, J.M.; Anjos, O.; Mira, H.; Belchior, A.P.; Canas, S. Kinetics of odorant compounds in wine brandies aged in different systems. Food Chem. 2016, 211, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strak, E. Changes in the chemical composition of plum distillate during maturation with oak chips under different conditions. Food Technol. Biotechnol. 2017, 55, 333–359. [Google Scholar] [CrossRef] [PubMed]
- Mosedale, J.; Puech, J.-L. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [Google Scholar] [CrossRef]
- Compendium of International Methods of Analysis of Spirituous Beverages of Vitivinicultural Origin; OIV: Paris, France, 2014.
- Anjos, O.; Martínez Comesaña, M.; Caldeira, I.; Pedro, S.I.; Eguía Oller, P.; Canas, S. Application of Functional Data Analysis and FTIR-ATR Spectroscopy to Discriminate Wine Spirits Ageing Technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Caldeira, I.; Vitória, C.; Anjos, O.; Fernandes, T.A.; Gallardo, E.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Wine Spirit Ageing with Chestnut Staves under Different Micro-Oxygenation Strategies: Effects on the Volatile Compounds and Sensory Profile. Appl. Sci. 2021, 11, 3991. [Google Scholar] [CrossRef]
- ISO 3591:1977 Sensory Analysis-Wine-Tasting Glass; This Standard Was Last Reviewed and Confirmed in 2016; International Organization for Standardization: Geneva, Switzerland, 1977.
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to Balance the Effect of Order of Presentation and First-Order Carry-Over Effects in Hall Tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Pedro, S.I.; Canas, S. FT-Raman methodology applied to identify different ageing stages of wine spirits. LWT 2020, 134, 1–9. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Rodríguez, N.; Dominguez, J.M.; Cortés, S. Characterization by chemical and sensory analysis of commercial grape marc distillate (Orujo) aged in oak wood. J. Inst. Brew. 2012, 118, 205–212. [Google Scholar] [CrossRef][Green Version]
- Caldeira, I.; Gomes, F.; Botelho, G. Arbutus unedo L. spirit: Does the water addition before fermentation matters? In Proceedings of the 1st International Congress on Engineering and Sustainability in the XXI Century—INCREaSE; Mortal, A., Aníbal, J., Monteiro, J., Sequeira, C., Semião, J., Moreira da Silva, M., Oliveira, M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 206–215. [Google Scholar]
- Coelho, E.; Domingues, L.; Teixeira, J.A.; Oliveira, J.M.; Tavares, T. Understanding wine sorption by oak wood: Modeling of wine uptake and characterization of volatile compounds retention. Food Res. Int. 2019, 116, 249–257. [Google Scholar] [CrossRef][Green Version]
- Canas, S.; Belchior Pedro, A.; Mateus, A.M.; Spranger, M.I.; Bruno de Sousa, R. Kinetics of impregnation/evaporation and release of phenolic compounds from wood to brandy in experimental model. Ciência Técnica Vitivinícola 2002, 17, 1–14. [Google Scholar]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Panosyan, A.G.; Mamikonyan, G.V.; Torosyan, M.; Gabrielyan, E.S.; Mkhitaryan, S.A.; Tirakyan, M.R.; Ovanesyan, A. Determination of the composition of volatiles in cognac (brandy) by headspace gas chromatography-mass spectrometry. Zhurnal Anal. Khimii 2001, 56, 1078–1086. [Google Scholar]
- Rodríguez Madrera, R.; Suárez Valles, B.; Picinelli Lobo, A. Chemical and sensory changes in fresh cider spirits during maturation in inert containers. J. Sci. Food Agric. 2011, 91, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Ledauphin, J.; Guichard, H.; Saint-Clair, J.-F.; Picoche, B.; Barillier, D. Chemical and Sensorial Aroma Characterization of Freshly Distilled Calvados. 2. Identification of Volatile Compounds and Key Odorants. J. Agric. Food Chem. 2003, 51, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Madrera, R.; García Hevia, A.; Suárez Valles, B. Comparative study of two aging systems for cider brandy making. Changes in chemical composition. LWT Food Sci. Technol. 2013, 54, 513–520. [Google Scholar] [CrossRef]
- Caldeira, I.; Mateus, A.M.; Belchior, A.P. Flavour and odour profile modifications during the first five years of Lourinhã brandy maturation on different wooden barrels. Anal. Chim. Acta 2006, 563, 264–273. [Google Scholar] [CrossRef]
- Cocciardi, R.A.; Ismail, A.A.; Sedman, J. Investigation of the Potential Utility of Single-Bounce Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy in the Analysis of Distilled Liquors and Wines. J. Agric. Food Chem. 2005, 53, 2803–2809. [Google Scholar] [CrossRef]
- Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef][Green Version]
- Coldea, T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pop, R.M.; Florea, M. Rapid Quantitative Analysis of Ethanol and Prediction of Methanol Content in Traditional Fruit Brandies from Romania, using FTIR Spectroscopy and Chemometrics. Not. Bot. Horti Agrobot. 2013, 41, 143. [Google Scholar] [CrossRef][Green Version]
- Barbosa-García, O.; Ornelas-Soto, N.; Meneses-Nava, M.; Ramos-Ortíz, G.; Maldonado, J.; Pichardo-Molina, J. Analysis of tequila extracts by solid phase extraction combined with ATR-FTIR spectroscopy. In Proceedings of the Imaging and Applied Optics Congress; OSA: Washington, DC, USA, 2010; p. ATuC5. [Google Scholar]
- Nagarajan, R.; Mehrotra, R.; Bajaj, M.M. Quantitative analysis of methanol, an adulterant in alcoholic beverages, using attenuated total reflectance spectroscopy. J. Sci. Ind. Res. 2006, 65, 416–419. [Google Scholar]
- Wiśniewska, P.; Boqué, R.; Borràs, E.; Busto, O.; Wardencki, W.; Namieśnik, J.; Dymerski, T. Authentication of whisky due to its botanical origin and way of production by instrumental analysis and multivariate classification methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 849–853. [Google Scholar] [CrossRef]
- Ozturk, B.; Yucesoy, D.; Ozen, B. Application of Mid-infrared Spectroscopy for the Measurement of Several Quality Parameters of Alcoholic Beverages, Wine and Raki. Food Anal. Methods 2012, 5, 1435–1442. [Google Scholar] [CrossRef][Green Version]
- Tarantilis, P.A.; Troianou, V.E.; Pappas, C.S.; Kotseridis, Y.S.; Polissiou, M.G. Differentiation of Greek red wines on the basis of grape variety using attenuated total reflectance Fourier transform infrared spectroscopy. Food Chem. 2008, 111, 192–196. [Google Scholar] [CrossRef]
- Shurvell, H.F. Spectra- Structure Correlations in the Mid- and Far-Infrared. In Handbook of Vibrational Spectroscopy; Chalmers, J.M., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2006. [Google Scholar]
- Canas, S.; Danalache, F.; Anjos, O.; Fernandes, T.A.; Caldeira, I.; Santos, N.; Fargeton, L.; Boissier, B.; Catarino, S. Behaviour of Low Molecular Weight Compounds, Iron and Copper of Wine Spirit Aged with Chestnut Staves under Different Levels of Micro-Oxygenation. Molecules 2020, 25, 5266. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Carrasco-Marín, F.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Chemical characterization of tequila maturation process and their connection with the physicochemical properties of the cask. J. Food Compos. Anal. 2021, 98, 103804. [Google Scholar] [CrossRef]
- Arslan, M.; Tahir, H.E.; Zareef, M.; Shi, J.; Rakha, A.; Bilal, M.; Xiaowei, H.; Zhihua, L.; Xiaobo, Z. Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends Food Sci. Technol. 2021, 107, 80–113. [Google Scholar] [CrossRef]
- Lachenmeier, D.W. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chem. 2007, 101, 825–832. [Google Scholar] [CrossRef]
- Yucesoy, D.; Ozen, B. Authentication of a Turkish traditional aniseed flavoured distilled spirit, raki. Food Chem. 2013, 141, 1461–1465. [Google Scholar] [CrossRef] [PubMed][Green Version]
Samples | Total Acidity | Fixed Acidity | Volatile Acidity | pH | Dry Extract (mg/L) |
---|---|---|---|---|---|
(g of Acetic Acid/L) | |||||
C | 0.140 ± 0.00 * | 0.009 ± 0.001 * | 0.130 ± 0.001 * | 3.91 ± 0.02 | 10 ± 2.00 * |
LT3 | 0.198 ± 0.030 a | 0.063 ± 0.010 a | 0.135 ± 0.024 a | 4.01 ± 0.09 a | 435 ± 65.7 a |
MT3 | 0.210 ± 0.036 a | 0.075 ± 0.013 ab | 0.135 ± 0.044 a | 3.86 ± 0.01 a | 740 ± 24.5 d |
MPT3 | 0.298 ± 0.025 bc | 0.070 ±0.014 ab | 0.228 ±0.029 b | 3.91 ±0.02 a | 626 ± 11.8 c |
LT6 | 0.265 ± 0.042 b | 0.078 ± 0.005 ab | 0.188 ± 0.039 ab | 3.77 ± 0.14 a | 534 ± 14 b |
MT6 | 0.330 ± 0.024 c | 0.105 ± 0.006 c | 0.225 ±0.026 b | 3.85 ± 0.03 a | 793 ±53.8 d |
MPT6 | 0.325 ± 0.031 c | 0.083 ± 0.005 b | 0.243 ± 0.030 c | 3.97 ± 0.03 a | 678 ± 59.1 c |
Code | Alcohol Strength (% v/v) | Methanol (mg/L) | Acetaldehyde (mg/L) | Ethyl Acetate (mg/L) |
---|---|---|---|---|
C | 46.2 ± 0.00 * | 4370 ± 8.54 * | 115.4 ± 0.49 * | 259.4 ± 2.12 * |
LT3 | 47.9 ± 0.11 b | 4247.4 ± 83.60 a,b | 127.6 ± 2.31 b | 245.1 ± 46.6 a |
MT3 | 46.9 ± 0.01 a | 4225.0 ± 38.76 a | 124.7 ± 5.95 b | 258.4 ± 9.70 a |
MPT3 | 46.9 ± 0.01 a | 4225.4 ± 56.30 a | 122.4 ± 5.79 b | 270.0 ± 7.41 a |
LT6 | 46.8 ± 0.13 a | 4239.9 ± 37.54 b | 124.0 ± 4.17 b | 266.6 ± 5.98 a |
MT6 | 47.0 ± 0.03 a | 4294.9 ± 34.91 a,b | 123.5 ± 2.57 b | 269.5 ± 3.49 a |
MPT6 | 47.0 ± 0.03 ab | 4301.1 ± 63.75 b | 110.2 ± 6.52 a | 266.7 ± 22.7 a |
Code | butan-1-ol (mg/L) | propan-1-ol (mg/L) | 2-methylpropan-1-ol (mg/L) | butan-2-ol (mg/L) | 2+3-methylbutan-1-ol (mg/L) |
---|---|---|---|---|---|
C | 1.79 ± 0.02 | 84.88 ± 0.05 | 200.57 ± 0.34 | 1.66 ± 0.11 | 839.77 ± 1.34 * |
LT3 | 1.85 ± 0.31 a | 83.04 ± 1.57 a | 197.53 ± 1.56 a | 1.82 ± 0.21 a | 825.07 ± 4.98 b |
MT3 | 1.96 ± 0.06 a | 82.87 ± 0.49 a | 197.18 ± 1.66 a | 1.71 ± 0.27 a | 824.44 ± 6.22 b |
MPT3 | 1.69 ± 0.30 a | 82.35 ± 1.22 a | 194.46 ± 2.77 a | 1.86 ± 0.06 a | 808.29 ± 12.35 a |
LT6 | 1.90 ± 0.14 a | 83.39 ± 0.28 a | 196.00 ± 1.21 a | 2.17 ± 0.02 a | 819.12 ± 1.79 b |
MT6 | 1.87 ± 0.11 a | 83.59 ± 0.87 a | 196.45 ± 1.53 a | 2.08 ± 0.21 a | 822.22 ± 8.05 b |
MPT6 | 1.86 ± 0.21 a | 83.61 ± 0.59 a | 197.79 ± 2.21 a | 1.70 ± 0.31 a | 810.18 ± 7.94 a |
Attributes | C | LT3 | MT3 | MPT3 | LT6 | MT6 | MP 6 | |
---|---|---|---|---|---|---|---|---|
Olfactory | Alcohol | 2.8 | 2.8 | 2.3 | 2.6 | 2.6 | 2.6 | 2.8 |
Fruity | 2.7 | 1.6 | 1.5 | 1.8 | 1.5 | 1.7 | 1.7 | |
Floral | 0.8 | 1.4 | 0.9 | 1.1 | 1.0 | 1.0 | 1.3 | |
Vanilla | 0.2 a | 1.2 b | 2.0 c | 1.0 b | 1.2 b | 1.6 bc | 1.8 c | |
Woody | 0.1 a | 1.9 ab | 1.9 b | 1.8 b | 1.1 ab | 1.9 b | 2.0 b | |
Rancid | 0.6 | 0.4 | 0.8 | 0.4 | 0.6 | 0.6 | 0.9 | |
Spicy | 0.8 | 1.3 | 1.6 | 1.4 | 1.3 | 1.5 | 1.5 | |
Caramel | 0.3 a | 0.7 ab | 1.7 d | 1.4 c | 0.8 ab | 1.1 bc | 1.5 c | |
Toasted | 0.5 a | 0.9 ab | 1.6 b | 1.3 b | 1.2 b | 1.3 b | 1.3 b | |
Dried fruits | 1.3 a | 1.4 ab | 1.8 b | 1.0 a | 1.2 a | 1.5 ab | 1.8 b | |
Smoke | 0.7 | 0.7 | 0.9 | 1.0 | 0.9 | 1.0 | 1.0 | |
Coffee | 0.1 a | 0.1 a | 0.3 ab | 0.3 ab | 0.4 ab | 0.3 ab | 0.7 b | |
Sweet | 1.5 b | 1.2 ab | 1.6 b | 0.8 a | 1.1 a | 1.1 a | 1.1 a | |
Green | 1.0 | 0.3 | 0.4 | 0.2 | 0.4 | 0.2 | 0.3 | |
Tails | 0.3 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | |
Glue | 0.0 | 0.5 | 0.2 | 0.4 | 0.5 | 0.3 | 0.5 | |
Caoutchouc | 0.4 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | |
Gustatory | Sweetness | 2.7 | 2.1 | 2.6 | 2.2 | 2.4 | 2.2 | 2.3 |
Smooth | 2.4 a | 2.5 a | 3.1 b | 2.7 ab | 3.1 b | 2.5 a | 2.8 ab | |
Burning | 3.2 b | 2.7 a | 2.5 a | 2.7 a | 2.6 a | 2.6 a | 2.5 a | |
Astringency | 1.7 | 1.6 | 1.5 | 1.4 | 1.5 | 1.7 | 1.6 | |
Roughness | 2.2 | 1.8 | 1.6 | 1.8 | 1.7 | 1.7 | 1.9 | |
Bitterness | 1.0 | 1.2 | 0.9 | 1.3 | 1 | 1.2 | 1.3 | |
Body | 2.5 a | 2.4 a | 3.0 b | 2.9 ab | 2.7 ab | 2.9 ab | 2.9 ab | |
Unctuous | 1.8 | 2.2 | 2.6 | 2.0 | 2.4 | 1.9 | 2.2 | |
Flavour evolution | 1.9 a | 2.4 ab | 2.8 b | 2.8 b | 2.7 b | 2.6 b | 2.8 b | |
Flavour complexity | 2.8 a | 2.8 a | 3.2 ab | 3.0 ab | 3.3 b | 3.0 ab | 3.0 ab | |
Retronasal aroma | 2.9 a | 2.7 a | 3.3 b | 3.1 ab | 3.1 ab | 3.0 ab | 3.0 ab | |
Aroma quality | 12.8 a | 13.9 b | 15.2 c | 14.0 b | 14.1 b | 14.2 b | 14.3 b | |
Flavour quality | 13.2 a | 13.6 ab | 15.0 c | 14.2 bc | 13.6 ab | 14.4 bc | 14.2 bc | |
Overall quality | 13.2 a | 13.7 b | 15.0 c | 14.1 b | 14.2 b | 14.3 b | 14.1 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjos, O.; Pedro, S.I.; Caramelo, D.; Semedo, A.; Antunes, C.A.L.; Canas, S.; Caldeira, I. Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale. Appl. Sci. 2021, 11, 5065. https://doi.org/10.3390/app11115065
Anjos O, Pedro SI, Caramelo D, Semedo A, Antunes CAL, Canas S, Caldeira I. Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale. Applied Sciences. 2021; 11(11):5065. https://doi.org/10.3390/app11115065
Chicago/Turabian StyleAnjos, Ofélia, Soraia Inês Pedro, Débora Caramelo, Andreia Semedo, Carlos A. L. Antunes, Sara Canas, and Ilda Caldeira. 2021. "Characterization of a Spirit Beverage Produced with Strawberry Tree (Arbutus unedo L.) Fruit and Aged with Oak Wood at Laboratorial Scale" Applied Sciences 11, no. 11: 5065. https://doi.org/10.3390/app11115065