# Design of Dual Circularly Polarized Sequentially-Fed Patch Antennas for Satellite Applications

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Design and Characterization of a Dual-CP Sequentially-Fed Single Patch Antenna

## 3. Dual-CP 2-by-2 Array Antenna for Satcom Applications

## 4. Array Prototype Fabrication and Measurements

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Di Carlo, C.; Di Donato, L.; Mauro, G.; La Rosa, R.; Livreri, P.; Sorbello, G. A circularly polarized wideband high gain patch antenna for wireless power transfer. Microw. Opt. Technol. Lett.
**2018**, 60, 620–625. [Google Scholar] [CrossRef] - Pavone, S.C.; Casaletti, M.; Albani, M. Automatic Design of a CP Fan-Beam Linear Slotted Array in SIW Technology. IEEE Access
**2019**, 7, 155977–155985. [Google Scholar] [CrossRef] - Liao, S.; Xue, Q. Compact UHF Three-Element Sequential Rotation Array Antenna for Satcom Applications. IEEE Trans. Antennas Propag.
**2017**, 65, 2328–2338. [Google Scholar] [CrossRef] - Zaid, J.; Abdulhadi, A.; Kesavan, A.; Belaizi, Y.; Denidni, T.A. Multiport Circular Polarized RFID-Tag Antenna for UHF Sensor Applications. Sensors
**2017**, 17, 1576. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yasin, T.; Baktur, R. Circularly polarized meshed patch antenna for small satellite application. IEEE Antennas Wirel. Propag. Lett.
**2013**, 12, 1057–1060. [Google Scholar] [CrossRef] - Nascetti, A.; Pittella, E.; Teofilatto, P.; Pisa, S. High-Gain S-band Patch Antenna System for Earth-Observation CubeSat Satellites. IEEE Antennas Wirel. Propag. Lett.
**2015**, 14, 434–437. [Google Scholar] [CrossRef] - Falade, O.P.; Rehman, M.U.; Gao, Y.; Chen, X.; Parini, C.G. Single feed stacked patch circular polarized antenna for triple band GPS receivers. IEEE Trans. Antennas Propag.
**2012**, 60, 4479–4484. [Google Scholar] [CrossRef] - Squadrito, P.; Livreri, P.; Di Donato, L.; Squadrito, C.; Sorbello, G. A Telemetry, Tracking, and Command Antennas System for Small-Satellite Applications. Electronics
**2019**, 8, 689. [Google Scholar] [CrossRef][Green Version] - Pavone, S.C.; Ettorre, M.; Casaletti, M.; Albani, M. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution. Opt. Expr.
**2016**, 24, 11103–11111. [Google Scholar] [CrossRef] - Pavone, S.C.; Mazzinghi, A.; Freni, A.; Albani, M. Comparison between broadband Bessel beam launchers based on either Bessel or Hankel aperture distribution for millimeter wave short pulse generation. Opt. Express
**2017**, 25, 19548–19560. [Google Scholar] [CrossRef] - Comite, D.; Fuscaldo, W.; Pavone, S.C.; Valerio, G.; Ettorre, M.; Albani, M.; Galli, A. Propagation of nondiffracting pulses carrying orbital angular momentum at microwave frequencies. Appl. Phys. Lett.
**2017**, 110, 114102. [Google Scholar] [CrossRef][Green Version] - Wissan, V.; Firmansyah, I.; Rizki Akbar, P.; Sri Sumantyo, J.T.; Kuze, H.; Yohandri, V. Development of circularly polarized array antenna for synthetic aperture radar sensor installed on UAV. Prog. Electromagn. Res.
**2011**, 19, 119–133. [Google Scholar] - Pavone, S.C.; Martini, E.; Albani, M.; Maci, S.; Renard, C.; Chazelas, J. A novel approach to low profile scanning antenna design using reconfigurable Metasurfaces. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Teshirogi, T.; Tanaka, M.; Chujo, W. Wideband circularly polarised array antenna with sequential rotations and phase shifts of elements. In Proceedings of the Intern. Symp. Antennas Propag (ISAP 85), Kyoto, Japan, 7–9 October 1985. [Google Scholar]
- Hall, P.S.; Dahele, J.S.; James, J.R. Design principles of sequentially fed, wide bandwidth, circularly polarised microstrip antennas. IEE Proc.
**1989**, 136, 381–389. [Google Scholar] [CrossRef] - Deng, C.; Li, Y.; Zhang, Z.; Feng, Z. A Wideband Sequential-Phase Fed Circularly Polarized Patch Array. IEEE Trans. Antennas Propag.
**2014**, 62, 3890–3893. [Google Scholar] [CrossRef] - Garg, R.; Bhartia, P.; Bahl, I.J.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House: Massachusetts, MA, USA, 2001. [Google Scholar]
- Chen, X.; Fu, G.; Gong, S.; Yan, Y.; Zhao, W. Circularly Polarized Stacked Annular-Ring Microstrip Antenna With Integrated Feeding Network for UHF RFID Readers. IEEE Antennas Wirel. Propag. Lett.
**2010**, 9, 542–545. [Google Scholar] [CrossRef] - Wincza, K.; Gruszczynski, S. Microstrip Antenna Arrays Fed by a Series-Parallel Slot-Coupled Feeding Network. IEEE Antennas Wirel. Propag. Lett.
**2011**, 10, 991–994. [Google Scholar] [CrossRef] - Harine, G.; Pavone, S.C.; Di Donato, L.; Di Mariano, P.; Distefano, G.; Livreri, P.; Prabagarane, N.; Squadrito, C.; Sorbello, G. Design of a Compact Dual Circular-Polarized Antenna for L-Band Satellite Applications. IEEE Antennas Wirel. Propag. Lett.
**2020**. [Google Scholar] [CrossRef] - Mauro, G.S.; Torrisi, G.; Di Mariano, P.; Squadrito, C.; Emanuele, S.; Di Donato, L.; Sorbello, G. Wide Bandwidth Dual Port, Dual Sense Circular Polarization Antenna for Satellite Applications. In Proceedings of the ICEAA 2019, Granada, Spain, 9–13 September 2019. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Wong, Y.S.; Zheng, S.Y.; Chan, W.S. Quasi-Arbitrary Phase-Difference Hybrid Coupler. IEEE Trans. Microw. Theory Tech.
**2012**, 60, 1530–1539. [Google Scholar] [CrossRef] - Wu, Y.; Jiao, L.; Xue, Q.; Liu, Y. A Universal Approach for Designing an Unequal Branch-Line Coupler With Arbitrary Phase Differences and Input/Output Impedances. IEEE Trans. Compon. Packag. Manuf. Technol.
**2017**, 7, 944–955. [Google Scholar] [CrossRef] - Park, M. Comments on “Quasi-arbitrary phase-difference hybrid coupler”. IEEE Trans. Microw. Theory Tech.
**2013**, 61, 1397–1398. [Google Scholar] [CrossRef] - Wu, Y.; Shen, J.; Liu, Y. Comments on “Quasi-Arbitrary Phase-Difference Hybrid Coupler”. IEEE Trans. Microw. Theory Tech.
**2013**, 61, 1725–1727. [Google Scholar] [CrossRef] - Ahn, H.; Tentzeris, M.M. Comments on “A Universal Approach for Designing an Unequal Branch-Line Coupler With Arbitrary Phase Differences and Input/Output Impedances”. IEEE Trans. Compon. Packag. Manuf. Technol.
**2019**, 9, 1208–1209. [Google Scholar] [CrossRef] - Wu, Y.; Jiao, L.; Xue, Q.; Liu, Y. Reply to “Comments on ‘A Universal Approach for Designing an Unequal Branch-Line Coupler with Arbitrary Phase Differences and Input/Output Impedances’”. IEEE Trans. Compon. Packag. Manuf. Technol.
**2019**, 9, 1210–1216. [Google Scholar] [CrossRef] - Tran, H.H.; Park, I. Wideband circularly polarized cavity-backed asymmetric crossed bowtie dipole antenna. IEEE Antennas Wirel. Propag. Lett.
**2015**, 15, 358–361. [Google Scholar] [CrossRef] - Pavone, S.C.; Albani, M. Exact Formulas for the Determination of Antenna Local Phase Center. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Kraków, Poland, 31 March–4 April 2019; pp. 1–3. [Google Scholar]
- Gharibi, H.; Hojjat-Kashani, F. Design of a wideband monopulse antenna using four conical helix antennas. Prog. Electromagn. Res.
**2012**, 29, 25–33. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Side-view of the proposed sequential-fed patch antenna loaded by monopoles properly designed to increase the antenna gain close to end-fire direction, in which the relevant geometrical parameters are highlighted.

**Figure 2.**(

**a**) Schematic of the feeding network in microstrip technology. By alternatively feeding the antenna at ports RHCP or LHCP, dual-CP operation mode is enabled. (

**b**) Prototype of sequentially-fed patch antenna surrounded by a fence of passive monopoles and operating at $f=8.25$ GHz.

**Figure 3.**Simulated RHCP (G

_{R}) and LHCP (G

_{L}) gain patterns versus elevation angle with (filled markers) and without (empty markers) monopoles around the single radiating patch, for the cut-planes at (

**a**) ϕ = 0° and at (

**b**) ϕ = 90°. The results are provided at the central frequency f = 2.2 GHz. (

**c**) Simulated (empty triangular/squared markers, dashed lines) and measured (filled triangular/squared markers, continuous lines) reflection coefficients at RHCP (S

_{RHCP}) and LHCP (S

_{LHCP}) input ports, together with simulated (empty circular markers, dashed line) and measured (filled circular markers, continuous line) isolation between RHCP and LHCP ports (S

_{ISOL}), in the considered bandwidth [8.1,8.4] GHz. (

**d**) Measured co-polar and cross-polar gain patterns at ϕ = 0° versus elevation angle at the operating frequency f = 8.25 GHz.

**Figure 4.**(

**a**) Side-view of the proposed 2-by-2 patch array operating in the higher UHF band. (

**b**) Reflection coefficient (${S}_{11}$,${S}_{22}$) versus frequency over the operating bandwidth. (

**c**) Gain versus frequency over the operating bandwidth. (

**d**) Simulated broadside axial ratio ($\theta ={0}^{\xb0}$) versus frequency, for different elevation and azimuthal angles. As it is apparent, the monopoles are able to increase significantly antenna polarization purity.

**Figure 5.**Simulated RHCP (${G}_{R}$) and LHCP (${G}_{L}$) gain patterns versus elevation angle with (filled markers) and without (empty markers) monopoles around the 2-by-2 array, for the cut-planes at (

**a**) $\varphi ={0}^{\xb0}$ and at (

**b**) $\varphi ={90}^{\xb0}$. The results are provided at the central frequency $f=2.2$ GHz.

**Figure 6.**(

**a**) Prototype of dual-CP sequentially-fed 2-by-2 antenna array. (

**b**) Simulated co-polar (thin continuous black line with empty triangles for the cut plane at $\varphi ={0}^{\xb0}$, thin blue dashed line with empty squares for the cut plane at $\varphi ={90}^{\xb0}$) and measured co-polar (thin continuous black line with empty triangles for the cut plane at $\varphi ={0}^{\xb0}$, thin blue dashed line with empty squares for the cut plane at $\varphi ={90}^{\xb0}$) and simulated cross-polar (thick blue and black continuous lines with filled triangles for the cut planes at $\varphi ={0}^{\xb0}$ and $\varphi ={90}^{\xb0}$, respectively) gains of the array antenna at the central frequency $f=2.2$ GHz.

**Figure 7.**Block scheme of the connections between $\Sigma -\Delta $ networks and the 2-by-2 array RH/LH CP ports.

**Figure 8.**(

**a**) Fabricated $\Sigma -\Delta $ network. (

**b**) Layout. (

**c**) Reflection coefficient (${S}_{jj}$) over all the considered bandwidth (

**d**) Insertion Loss. (

**e**) Relative phase. (

**f**) Comparison of simulated (filled markers) and measured (empty markers) normalized difference patterns required for satellite tracking. Such patterns are obtained by connecting the antenna array to a standard $\Sigma -\Delta $ network.

Microstrip Line | Impedance [$\Omega $] | Length [mm] |
---|---|---|

$\#1$ | $90.2$ | $8.19$ |

$\#2$ | $75.1$ | $6.48$ |

$\#3$ | $86.4$ | $5.39$ |

$\#4$ | $55.6$ | $5.78$ |

**Table 2.**Single patch antenna geometric parameters ($f=8.25\phantom{\rule{3.33333pt}{0ex}}\mathrm{GHz}$).

Parameter | Description | Value [mm] | Value [${\mathit{\lambda}}_{0}$] |
---|---|---|---|

${r}_{ant}$ | Antenna radius | $15.5$ | $0.43$ |

${r}_{p}$ | Patch radius | $8.65$ | $0.24$ |

${r}_{m}$ | Monopole position | 11 | $0.30$ |

${d}_{m}$ | Monopole diameter | $1.5$ | $0.04$ |

${h}_{sub}$ | Substrate thickness | $0.76$ | $0.02$ |

${h}_{m}$ | Monopole heights | $5.5$ | $0.15$ |

${h}_{0}$ | Patch height | $1.49$ | $0.04$ |

**Table 3.**The 2-by-2 array geometric parameters ($f=2.2\phantom{\rule{3.33333pt}{0ex}}\mathrm{GHz}$).

Parameter | Description | Value [mm] | Value [${\mathit{\lambda}}_{0}$] |
---|---|---|---|

${h}_{d}$ | Dielectric thickness | $2.57$ | $0.019$ |

${h}_{a}$ | Air gap thickness | 9 | $0.07$ |

${R}_{p}$ | Patch radius | 29 | $0.21$ |

${R}_{m}$ | Monopole radius | 1 | $0.007$ |

${h}_{m}$ | Monopole heights | 24 | $0.20$ |

${l}_{c}$ | Patch cut length | 41 | $0.30$ |

${d}_{m}$ | Adjacent monopole distance | 4 | $0.03$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pavone, S.C.; Mauro, G.S.; Donato, L.D.; Sorbello, G. Design of Dual Circularly Polarized Sequentially-Fed Patch Antennas for Satellite Applications. *Appl. Sci.* **2020**, *10*, 2107.
https://doi.org/10.3390/app10062107

**AMA Style**

Pavone SC, Mauro GS, Donato LD, Sorbello G. Design of Dual Circularly Polarized Sequentially-Fed Patch Antennas for Satellite Applications. *Applied Sciences*. 2020; 10(6):2107.
https://doi.org/10.3390/app10062107

**Chicago/Turabian Style**

Pavone, Santi Concetto, Giorgio Sebastiano Mauro, Loreto Di Donato, and Gino Sorbello. 2020. "Design of Dual Circularly Polarized Sequentially-Fed Patch Antennas for Satellite Applications" *Applied Sciences* 10, no. 6: 2107.
https://doi.org/10.3390/app10062107