Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Setup
2.2. Dust Emission Experiment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amézketa, E. Soil aggregate stability: A review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.L. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Calvo-Cases, A.; Imeson, A.C.; Soriano-Soto, M.D. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 2001, 44, 47–67. [Google Scholar] [CrossRef]
- Hevia, G.G.; Mendez, M.; Buschiazzo, D.E. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma 2007, 140, 90–96. [Google Scholar] [CrossRef]
- Allison, F.E. Soil aggregation—Some facts and fallacies as seen by a microbiologist. Soil Sci. 1968, 106, 136–143. [Google Scholar] [CrossRef]
- Horn, R.; Taubner, H.; Wuttke, M.; Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 1994, 30, 187–216. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, and Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 1489–1589. [Google Scholar]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Norton, L.D.; Mamedov, A.I.; Huang, C.; Levy, G.J. Soil aggregate stability as affected by long-term tillage and clay type. Adv. GeoEcol. 2006, 38, 422–429. [Google Scholar]
- Haynes, R.J.; Swift, R.S. Stability of soil aggregates in relation to organic constituents and soil water content. J. Soil Sci. 1990, 41, 73–83. [Google Scholar] [CrossRef]
- Reichert, J.M.; Norton, L.D.; Favaretto, N.; Huang, C.H.; Blume, E. Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy. Soil Sci. Soc. Am. J. 2009, 73, 1369–1377. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, J.M.; Oades, J. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Soil Science Society of America: Madison, WI, USA, 1986; Volume 5, pp. 425–442. [Google Scholar]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2000, 51, 595–605. [Google Scholar] [CrossRef]
- Chepil, W.S. Measurement of wind erosiveness of soils by dry sieving procedure. Sci. Agric. 1942, 23, 154–160. [Google Scholar]
- Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 2010, 159, 228–236. [Google Scholar] [CrossRef]
- van Bavel, C.H.M. Mean weight-diameter of soil aggregates as a statistical. Soil Sci. Soc. Am. J. 1949, 14, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Tanner, S.; Katra, I.; Haim, A.; Zaady, E. Short-Term soil loss by eolian erosion in response to different rain-fed agricultural practices. Soil Tillage Res. 2016, 155, 149–156. [Google Scholar] [CrossRef]
- Sharratt, B.; Wendling, L.; Feng, G. Windblown dust affected by tillage intensity during summer fallow. Aeolian Res. 2010, 2, 129–134. [Google Scholar] [CrossRef]
- Zobeck, T.; Popham, T.; Skidmore, E.; Lamb, J.; Merrill, S.; Lindstrom, M. Aggregate-Mean diameter and wind-erodible soil predictions using dry aggregate-size distributions. Soil Sci. Soc. Am. J. 2013, 67, 425–436. [Google Scholar] [CrossRef]
- Bagnold, R. The Physics of Blown Sand and Desert Dunes; Methuen: London, UK, 1941; Volume 10, p. 265. [Google Scholar]
- O’Brien, P.; Neuman, C.M. PTV measurement of the spanwise component of aeolian transport in steady state. Aeolian Res. 2016, 20, 126–138. [Google Scholar] [CrossRef]
- Anderson, R.S. Eolian sediment transport as a stochastic process: The effects of a fluctuating wind on particle trajectories. J. Geol. 1987, 95, 497–512. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Kok, J.; Parteli, E.; Michaels, T.; Karam, D. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swet, N.; Katra, I. Reduction in soil aggregation in response to dust emission processes. Geomorphology 2016, 268, 177–183. [Google Scholar] [CrossRef]
- Kok, J.F.; Mahowald, N.M.; Fratini, G.; Gillies, J.A.; Ishizuka, M.; Leys, J.F.; Mikami, M.; Park, M.-S.; Park, S.-U.; van Pelt, R.S.; et al. An improved dust emission model—Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. 2014, 14, 13023. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Song, Y.; Kaskaoutis, D.G.; Chen, X.; Mamadjanov, Y.; Tan, L. Atmospheric dust dynamics in southern central Asia: Implications for buildup of Tajikistan loess sediments. Atmos. Res. 2019, 229, 74–85. [Google Scholar]
- Katra, I.; Yizhaq, H. Intensity and degree of segregation in bimodal and multimodal grain size distributions. Aeolian Res. 2017, 27, 23–34. [Google Scholar] [CrossRef]
- Yulevitch, G.; Danon, M.; Krasovitov, B.; Fominykh, A.; Swet, N.; Tsesarsky, M.; Katra, I. Evaluation of wind-induced dust-PM emission from unpaved roads varying in silt content by experimental results. Atmos. Pollut. Res. 2020, 11, 261–268. [Google Scholar] [CrossRef]
- Katra, I. Soil erosion by wind and dust emission in semi-arid soils due to agricultural activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Sirjani, E.; Sameni, A.; Moosavi, A.A.; Mahmoodabadi, M.; Laurent, B. Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province, Iran. Geoderma 2019, 333, 69–80. [Google Scholar] [CrossRef]
- Swet, N.; Elperin, T.; Kok, J.F.; Martin, R.L.; Katra, H.Y.I. Can active sands generate dust particles by wind-induced processes? Earth Planet. Sci. Lett. 2019, 506, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Elperin, T.; Fominykh, A.; Krasovitov, B.; Yizhaq, H. Modeling of particulate matter transport in atmospheric boundary layerfollowing dust emission from source areas. Aeolian Res. 2016, 20, 147–156. [Google Scholar] [CrossRef]
- Six, J.; Degryze, S.; Bossuyt, H.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Denef, K.; Six, J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. Eur. J. Soil Sci. 2005, 56, 469–479. [Google Scholar] [CrossRef]
- Vaezi, A.; Sadeghi, S.; Bahrami, H.; Mahdian, M.H. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 2008, 97, 414–423. [Google Scholar] [CrossRef]
- Roth, B.; Eggert, T. Mechanisms of aggregate breakdown involved in surface sealing, runoff generation and sediment concentration on loess soils. Soil Tillage Res. 1994, 32, 253–268. [Google Scholar] [CrossRef]
- Chen, H.; Hou, R.; Gong, Y.; Li, H.; Fan, M.; Kuzyakov, Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res. 2009, 106, 85–94. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.; Zhou, N.; Chang, C.; Guo, Z.; Li, J. Effect of wind speed on aggregate size distribution of windblown sediment. Aeolian Res. 2019, 36, 1–8. [Google Scholar] [CrossRef]
- Raupach, M.; Leys, J. Erodynamics of a portable wind erosion tunnel for measuring soil erodibility by wind. Soil Res. 1990, 28, 177–191. [Google Scholar] [CrossRef]
- van Pelt, R.; Baddock, M.; Zobeck, T.; Schlegel, A.; Vigil, M.; Martinez, V.A. Field wind tunnel testing of two silt loam soils on the North America Central high plains. Aeolian Res. 2013, 10, 53–59. [Google Scholar] [CrossRef]
- Shao, Y.; Raupach, M.; Findlater, P. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Atmos. 1993, 98, 12719–12726. [Google Scholar] [CrossRef] [Green Version]
- Houser, C.A.; Nickling, W.G. The emission and vertical flux of particulate matter <10 μm from a disturbed clay-crusted surface. Sedimentology 2001, 48, 255–267. [Google Scholar]
- Panebianco, J.E.; Mendez, M.J.; Buschiazzo, D.E. PM10 emission, sandblasting efficiency and vertical entrainment during successive wind-erosion events: A wind-tunnel approach. Bound. Layer Meteorol. 2016, 161, 335–353. [Google Scholar] [CrossRef]
- Huang, Y.; Kok, J.F.; Martin, R.L.; Swet, N.; Katra, I.; Gill, T.E.; Reynolds, R.L.; Freire, L.S. Fine dust emissions from active sands at coastal Oceano Dunes, California. Atmos. Chem. Phys. 2019, 19, 2947–2964. [Google Scholar] [CrossRef] [Green Version]
- Feddema, J.J.; Freire, S. Soil degradation, global warming and climate impacts. Clim. Res. 2001, 17, 209–216. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.; Hopmans, J.; Olson, C.; Sztein, A.; Sparks, D. Soil and human security in the 21st century. Soil Sci. 2015, 348, 1261071. [Google Scholar] [CrossRef] [Green Version]
- Lavee, H.; Imeson, A.; Sarah, P. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad. 1998, 9, 407–422. [Google Scholar] [CrossRef]
Clay (%) | Silt (%) | Sand (%) | CaCO3 (%) | SOM (%) | |
---|---|---|---|---|---|
63–250 µm | 16.1 (6.0) | 60.5 (12.3) | 23.3 (18.4) | 14.4 (1.6) | 2.2 (0.1) |
250–500 µm | 12.8 (1.5) | 53.1 (4.2) | 34.0 (5.7) | 12.9 (0.8) | 2.1 (0.2) |
500–1000 µm | 11.7 (0.8) | 55.6 (1.2) | 32.6 (0.3) | 8.5 (1.5) | 2.1 (0.3) |
Bulk sample | 13.7 (N/A) | 60.4 (N/A) | 25.8 (N/A) | 10.6 (0.7) | 2.9 (0.0) |
u* (m/s) | Sample 63–250 µm | Sample 250–500 µm | Sample 500–1000 µm |
---|---|---|---|
<63 µ (%) | <63 µ (%) | <63 µ (%) | |
0.24 | 30.5 | N/A | N/A |
0.31 | 30.3 | 12.3 | N/A |
0.36 | 24.5 | 24.9 | N/A |
0.39 | 16.5 | 13.7 | N/A |
0.43 | 20.5 | 18.1 | 6.6 |
0.52 | 11.8 | 17.5 | 8.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelbart, G.; Katra, I. Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils. Appl. Sci. 2020, 10, 5410. https://doi.org/10.3390/app10165410
Gelbart G, Katra I. Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils. Applied Sciences. 2020; 10(16):5410. https://doi.org/10.3390/app10165410
Chicago/Turabian StyleGelbart, Gilad, and Itzhak Katra. 2020. "Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils" Applied Sciences 10, no. 16: 5410. https://doi.org/10.3390/app10165410
APA StyleGelbart, G., & Katra, I. (2020). Dependence of the Dust Emission on the Aggregate Sizes in Loess Soils. Applied Sciences, 10(16), 5410. https://doi.org/10.3390/app10165410