Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Methods
2.2.1. The Participatory Rural Appraisal (PRA) Method
2.2.2. The USLE Calculation
Rainfall Erosivity (R)
Erodibility Factor (K)
Topographic Factor (LS)
Cropping Management Factor (C)
Practice Support Factor (P)
2.2.3. Data Analysis
3. Results
3.1. Soil Erosion within the Research Site
3.2. Understanding Local Farming Systems in the Case Study
3.2.1. Social-Economic Background of Respondents
3.2.2. Adaptation Strategies in Responding to Climate Change
4. Discussion
4.1. Soil Erosion Risk and Indigenous Farming System
4.2. From Perception to Adaptive Measures Regarding the Soil Erosion Risk
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jarraud, M.; Steiner, A. Summary for Policymakers, 1st ed.; IPCC: Geneva, Switzerland, 2012; Volume 9781107025, ISBN 9781139177245. [Google Scholar]
- Bruun, O. Sending the right bill to the right people: Climate change, environmental degradation, and social vulnerabilities in Central Vietnam. Weather Clim. Soc. 2012, 4, 250–262. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D.; Yan, J. (Eds.) The Impact of Sea Level Rise on Developing Countries: A Comparative Analysis; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Shaw, R. Community-based climate change adaptation in Vietnam: Inter-linkages of environment, disaster, and human security. In Multiple Dimension of Global Environmental Changes; Sonak, S., Ed.; TERI Publication: New Delhi, India, 2006; pp. 521–547. [Google Scholar]
- McElwee, P. The Social Dimensions of Adaptation of Climate Change in Vietnam: The Social Dimensions of Adaptation of Climate Change in Vietnam; The World Bank: Washington, DC, USA, 2010; Volume 17. [Google Scholar]
- Margaret, W. The Effects of Climate Change on Agriculture, Land Resources, Water Resources, and Biodiversity in the United States. Available online: https://www.usda.gov/oce/climate_change/SAP4_3/CCSPFinalReport.pdf (accessed on 20 May 2020).
- Bautista, R. Agriculture-based development: A SAM perspective on Central Vietnam. Dev. Econ. 2001, 39, 112–132. [Google Scholar] [CrossRef] [Green Version]
- Phan, V.; Fink, A.; Ngo, D.; Trinh, T.; Pinto, J.; Van der Linden, R.; Schubert, D. Observed climate variations and change in Vietnam. In EWATECCOAST: Technologies for Environmental and Water Protection of Coastal Zones in Vietnam. Contributions to 4th International Conference for Environment and Natural Resources, ICENR 2014; Meon, G., Pätsch, M., Phuoc, N., Quan, N., Eds.; Cuvillier-Verlag: Göttingen, Germany, 2014. [Google Scholar]
- Pham, T.G.; Degener, J.; Kappas, M. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 99–110. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Climate Change Impacts on Agriculture in Vietnam. Strengthening Capacities to Enhance Coordinated and Integrated Disaster Risk Reduction Actions and Adaptation to Climate Change in Agriculture in the Northern Mountain Regions of Viet Nam; FAO: Hanoi, Vietnam, 2011. [Google Scholar]
- El Jazouli, A.; Barakat, A.; Ghafiri, A.; El Moutaki, S.; Ettaqy, A.; Khellouk, R. Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Soares, D.; Cunha, M. Assessing soil erosion risk using RUSLE through a GIS open source desktop and web application. Environ. Monit. Assess. 2016, 188, 351. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Risse, L.M.; Nearing, M.A. Nearing evaluation of WEPP and its comparison with USLE and RUSLE. Trans. ASAE 2000, 43, 1129–1135. [Google Scholar] [CrossRef]
- Parveen, R.; Kumar, U. Integrated approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand. J. Geogr. Inf. Syst. 2012, 4, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Kourgialas, N.N.; Koubouris, G.C.; Karatzas, G.P.; Metzidakis, I. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Nat. Hazards 2016, 83, 65–81. [Google Scholar] [CrossRef]
- Lufafa, A.; Tenywa, M.; Isabirye, M.; Majaliwa, M.J.; Woomer, P. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agric. Syst. 2003, 76, 883–894. [Google Scholar] [CrossRef]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Thi Hoa Sen, L.; Bond, J. Agricultural adaptation to flood in lowland rice production areas of Central Vietnam: Understanding the ‘regenerated rice’ ratoon system. Clim. Dev. 2017, 9, 274–285. [Google Scholar] [CrossRef]
- Delisle, S.; Turner, S. The weather is like the game we play: Coping and adaptation strategies for extreme weather events among ethnic minority groups in upland northern Vietnam. Asia Pac. Viewp. 2016, 57, 351–364. [Google Scholar] [CrossRef]
- Son, H.N.; Chi, D.T.L.; Kingsbury, A. Indigenous knowledge and climate change adaptation of ethnic minorities in the mountainous regions of Vietnam: A case study of the Yao people in Bac Kan Province. Agric. Syst. 2019, 176, 102683. [Google Scholar] [CrossRef]
- Kapoor, D.; Shizha, E. Indigenous Knowledge and Learning in Asia/Pacific and Africa, 1st ed.; Kapoor, D., Shizha, E., Eds.; Palgrave Macmillan US: New York, NY, USA, 2010; ISBN 978-1-349-38311-5. [Google Scholar]
- Raymond, P. Indigenous Knowledge, Ecology, and Evolutionary Biology (Indigenous Peoples and Politics); Routledge: London, UK, 2011; ISBN 978-0-203-84711-4. [Google Scholar]
- Rautela, P.; Karki, B. Weather forecasting: Traditional knowledge of the people of Uttarakhand Himalaya. J. Geogr. Environ. Earth Sci. Int. 2015, 3, 1–14. [Google Scholar] [CrossRef]
- Nkomwa, E.C.; Joshua, M.K.; Ngongondo, C.; Monjerezi, M.; Chipungu, F. Assessing indigenous knowledge systems and climate change adaptation strategies in agriculture: A case study of Chagaka Village, Chikhwawa, Southern Malawi. Phys. Chem. Earth Parts ABC 2014, 67–69, 164–172. [Google Scholar] [CrossRef]
- Jakobsen, J.; Rasmussen, K.; Leisz, S.; Folving, R.; Quang, N.V. The effects of land tenure policy on rural livelihoods and food sufficiency in the upland village of Que, North Central Vietnam. Agric. Syst. 2007, 94, 309–319. [Google Scholar] [CrossRef]
- Kyeyune, V.; Turner, S. Yielding to high yields? Critiquing food security definitions and policy implications for ethnic minority livelihoods in upland Vietnam. Geoforum 2016, 71, 33–43. [Google Scholar] [CrossRef]
- Malcolm, C. (Ed.) Voices from the Forest: Integrating Indigenous Knowledge Into Sustainable Upland Farming; Routledge: London, UK, 2014; ISBN 9781936331840. [Google Scholar]
- Mairura, F.S.; Mugendi, D.N.; Mwanje, J.I.; Ramisch, J.J.; Mbugua, P.K.; Chianu, J.N. Integrating scientific and farmers’ evaluation of soil quality indicators in Central Kenya. Geoderma 2007, 139, 134–143. [Google Scholar] [CrossRef]
- Teklu, E.; Gezahegn, A. Indigenous knowledge and practices for soil and water management in East Wollega, Ethiopia. In Technological and Institutional Innovations for Sustainable Rural Development: International Research on Food Security, Natural Resource Management and Rural Development; Book of Abstracts; Wollny, C., Deininger, A., Bhandari, N., Maass, B., Manig, W., Muuss, U., Brodbeck, F., Howe, I., Eds.; Georg-August-Universität: Göttingen, Germany, 2003; ISBN 3-9808714-3-6. [Google Scholar]
- Yeshambel, M. Indigenous knowledge practices in soil conservation at Konso People, South Western Ethiopia. J. Agric. Environ. Sci. 2013, 2, 1–10. [Google Scholar]
- Ajibade, L. Indigenous approach to the control of soil erosion among small scale farmers in Asa L.G.A., Kwara State, Nigeria. Ethiop. J. Environ. Stud. Manag. 2008, 1. [Google Scholar] [CrossRef] [Green Version]
- Prudat, B.; Bloemertz, L.; Kuhn, N.J. Local soil quality assessment of north-central Namibia: Integrating farmers’ and technical knowledge. SOIL 2018, 4, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Farmers’ perceived risks of climate change and influencing factors: A study in the Mekong Delta, Vietnam. Environ. Manag. 2014, 54, 331–345. [Google Scholar] [CrossRef]
- Huynh, L.T.M.; Stringer, L.C. Multi-scale assessment of social vulnerability to climate change: An empirical study in coastal Vietnam. Clim. Risk Manag. 2018, 20, 165–180. [Google Scholar] [CrossRef]
- People’s Committee of Dong Giang District. Statistical Annual Report of Dong Giang District; Quangnam Statistical Publishing House: Quangnam, Vietnam, 2018. [Google Scholar]
- Vietnam Academy of Social Sciences; Ministry of Labour; Invalids and Social Affairs; United Nations Development Programme. Multidimensional Poverty in Vietnam. Reducing Poverty in All Its Dimensions to Ensure a Good Quality Life for All; Ministry of Labour, Invalids and Social Affairs of Vietnam: Hanoi, Vietnam, 2018.
- Ty, P.H. Dilemmas of Hydropower Development in Vietnam: Between Dam-Induced Displacement and Sustainable Development; Eburon: Delft, The Netherlands, 2015; ISBN 978-90-5972-959-9. [Google Scholar]
- Nguyen, Q.T.; van Huynh, C.; Nguyen, H.K.L.; Tran, T.P.; Nguyen, T.H.M.; Pham, G.T.; Le, N.P.Q.; Tran, T.A.T.; van Truong, T. Effectiveness of agriculture-land use of Co Tu ethnic minority in mountainous areas of Quang Nam province. Hue Univ. J. Agric. Rural Dev. 2019, 128, 94–97. [Google Scholar]
- Natural Resources and Environment Department of Dong Giang District. Land Use Map of Dong Giang District (2017, Update 2019); Dong Giang Statistical Publishing House: Dong Giang District, Vietnam, 2019. [Google Scholar]
- Pearson, A.L.; Rzotkiewicz, A.; Mwita, E.; Lopez, M.C.; Zwickle, A.; Richardson, R.B. Participatory mapping of environmental resources: A comparison of a Tanzanian pastoral community over time. Land Use Policy 2017, 69, 259–265. [Google Scholar] [CrossRef]
- Salvini, G.; Ligtenberg, A.; van Paassen, A.; Bregt, A.K.; Avitabile, V.; Herold, M. REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. J. Environ. Manag. 2016, 172, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R. The origins and practice of participatory rural appraisal. World Dev. 1994, 22, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Chambers, R. Participatory rural appraisal (PRA): Challenges, potentials and paradigm. World Dev. 1994, 22, 1437–1454. [Google Scholar] [CrossRef]
- Dorothy, G. Participatory methods in community practice. In The Handbook of Community Practice; Weil, M., Reisch, M., Ohmer, M.L., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2013; pp. 327–343. ISBN 978-1412987851. [Google Scholar]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning: Agriculture Handbook No.537; United States Department of Agriculture: Washington, DC, USA, 1978.
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning With Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997; ISBN 0-16-048938-5.
- Gitas, I.Z.; Douros, K.; Minakou, C.; Silleos, G.N.; Karydas, C.G. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. In Proceedings of the EARSeL 33rd General Assembly and 29th annual Symposium, Chania, Greece, 15–18 June 2009; European Association of Remote Sensing Laboratories (EARSeL): Hanover, Germany, 2009; pp. 40–52. [Google Scholar]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Xie, Y.; Liu, B.; Nearing, M.A. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions. Hydrol. Earth Syst. Sci. 2015, 19, 4113–4126. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, E.A.; Bryant, R.B.; Schwager, S.J.; Smith, S.D. Predicting rainfall erosivity in Honduras. Soil Sci. Soc. Am. J. 1997, 61, 273–279. [Google Scholar] [CrossRef]
- Torri, D.; Borselli, L.; Guzzetti, F.; Calzolari, M.C.; Bazzoffi, P.; Ungaro, F.; Bartolini, D.; Salvador Sanchis, M.P. Italy. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 2006; pp. 245–261. ISBN 9780470859209. [Google Scholar]
- Kurt, C. Evaluation of Relationship Between the RUSLE R Factor and Mean Annual Precipitation. Available online: https://www.engr.colostate.edu/~pierre/ce_old/Projects/linkfiles/Cooper-R-factor-Final.pdf (accessed on 20 May 2020).
- Nguyen, T. Identify the Factors Effect to Soil Erosion and Forecast Soil Erosion on Slope Land. Ph.D Thesis, Thuy Loi University, Hanoi, Vietnam, 1996. [Google Scholar]
- Lin, B.-S.; Chen, C.-K.; Thomas, K.; Hsu, C.-K.; Ho, H.-C. Improvement of the K-Factor of USLE and soil erosion estimation in Shihmen reservoir watershed. Sustainability 2019, 11, 355. [Google Scholar] [CrossRef] [Green Version]
- Marques, V.; Ceddia, M.; Antunes, M.; Carvalho, D.; Anache, J.; Rodrigues, D.; Oliveira, P. USLE K-Factor method selection for a tropical catchment. Sustainability 2019, 11, 1840. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.H. Application Usle and Gis tool to predict soil erosion potential and proposal land cover solutions to reduce soil loss in Tay Nguyen. In Proceedings of the Bridging the Gap Between Cultures: FIG Working Week 2011 & 6th National Congress of ONIGT, Marrakech, Morocco, 18–22 May 2011; International Federation of Surveyors FIG: Copenhagen, Denmark, 2011. [Google Scholar]
- Vietnam National Institute of Agricultural Planning and Projection. Soil Type Map of Quang Nam Province (Scale 1:500.000); Agricultural Academy Publishing House: Hanoi, Vienam, 2005. [Google Scholar]
- Moore, D.I.; Wilson, P.J. Length slope factor for the revised universal soil loss equation: Simplified method of solution. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar]
- Mitasova, H.; Mitas, L. Multiscale soil erosion simulations for land use management. In Landscape Erosion and Evolution Modeling; Harmon, R.S., Doe, W.W., Eds.; Kluwer Academic/Plenum: New York, NY, USA, 2001; pp. 321–347. ISBN 978-1-4615-0575-4. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K. A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Fohrer, N.; Hörmann, G.; Kiesel, J. Suitability of S factor algorithms for soil loss estimation at gently sloped landscapes. CATENA 2009, 77, 248–255. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 2013, 52, 177–188. [Google Scholar] [CrossRef]
- Pike, A.; Mueller, T.; Rienzi, E.; Neelakantan, S.; Mijatovic, B.; Karathanasis, T.; Rodrigues, M. Terrain Analysis for locating erosion channels: Assessing LiDAR data and flow direction algorithm. In Gully Erosion in Southeastern Nigeria: Role of Soil Properties and Environmental Factors; Godone, D., Ed.; INTECH Open Access Publisher: London, UK, 2012; ISBN 978-953-51-0839-9. [Google Scholar]
- Bircher, P.; Liniger, H.P.; Prasuhn, V. Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland. Geomorphology 2019, 346, 106850. [Google Scholar] [CrossRef]
- Hrabalíková, M.; Janeček, M. Comparison of different approaches to LS factor calculations based on a measured soil loss under simulated rainfall. Soil Water Res. 2017, 12, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Tresch, S.; Meusburger, K. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX 2019, 6, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Nearing, M.A. A single, continuous function for slope steepness influence on soil loss. Soil Sci. Soc. Am. J. 1997, 61, 917–919. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Yang, Q.; Baartman, J.E.M.; Gai, L.; Yang, X.; Li, S.; Yu, J.; Ritsema, C.J.; Geissen, V. An improved method for calculating slope length (λ) and the LS parameters of the revised universal soil loss equation for large watersheds. Geoderma 2017, 308, 36–45. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Kuo, K.T.; Sekiyama, A.; Mihara, M. Determining C factor of Universal Soil Loss Equation (USLE) based on remote sensing. Int. J. Environ. Rural Dev. 2016, 7, 154–161. [Google Scholar]
- Schönbrodt, S.; Saumer, P.; Behrens, T.; Seeber, C.; Scholten, T. Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. J. Earth Sci. 2010, 21, 835–845. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, W.-T.; Chou, W.-C. Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil Tillage Res. 2002, 68, 143–152. [Google Scholar] [CrossRef]
- Karaburun, A.C. Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J. Appl. Sci. 2010, 3, 77–85. [Google Scholar]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.I. Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Jain, M.K.; Das, D. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour. Manag. 2010, 24, 2091–2112. [Google Scholar] [CrossRef]
- Karamage, F.; Zhang, C.; Kayiranga, A.; Shao, H.; Fang, X.; Ndayisaba, F.; Nahayo, L.; Mupenzi, C.; Tian, G. USLE-Based Assessment of soil erosion by water in the Nyabarongo river catchment, Rwanda. Int. J. Environ. Res. Public Health 2016, 13, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Wang, Y.; Liu, C. Effects of land use changes on soil erosion in a fast developing area. Int. J. Environ. Sci. Technol. 2014, 11, 1549–1562. [Google Scholar] [CrossRef] [Green Version]
- Shin, G. The Analysis of Soil Erosion Analysis in Watershed Using GIS. Ph.D. Thesis, Gang-won National University, Gangwon-do, Korea, 1999. [Google Scholar]
- Sabine, L.; Brian, S.E. A Handbook of Statistical Analyses Using SPSS; Chapman & Hall: London, UK, 2004. [Google Scholar]
- Jansen, P.C.; Cardon, D. Plant Resources for Tropical Africa 3. Dyes and Tannins; Backhuys Publisher: Leiden, The Netherlands, 2005; ISBN 90-5782-159-1. [Google Scholar]
- Berkman, E.; Reise, S. One- and two-sample t-tests. In A Conceptual Guide to Statistics Using SPSS; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2016; pp. 51–72. [Google Scholar]
- USGS Landsat Enhanced Vegetation Index. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-enhanced-vegetation-index?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 15 March 2020).
- Ho, K. Soil Erosion and Accumulation Evaluation on Some Popular Farming Systems on Steep Land in Huong River Catchment, Thua Thien Hue Province; University of Ha Noi Agriculture: Hanoi, Vietnam, 2000. [Google Scholar]
- Penížek, V.; Zádorová, T.; Kodešová, R.; Vaněk, A. Influence of elevation data resolution on spatial prediction of colluvial soils in a Luvisol region. PLoS ONE 2016, 11, e0165699. [Google Scholar] [CrossRef]
- Raj, A.R.; George, J.; Raghavendra, S.; Kumar, S.; Agrawal, S. Effect of DEM resolution on LS factor computation. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Baartman, J.E.M.; Xiaomei, Y.; Lingtong, G.; Viollette, G. Influence of terraced area DEM resolution on RUSLE LS factor. In Proceedings of the Geophysical Research Abstracts, EGU General Assembly 2017, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Baul, T.K.; McDonald, M.A. Agro-biodiversity management: Using indigenous knowledge to cope with climate change in the middle-hills of Nepal. Agric. Res. 2014, 3, 41–52. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energy Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Geißler, C.; Nadrowski, K.; Kühn, P.; Baruffol, M.; Bruelheide, H.; Schmid, B.; Scholten, T. Kinetic energy of throughfall in subtropical forests of SE China—Effects of tree canopy structure, functional traits, and biodiversity. PLoS ONE 2013, 8, e49618. [Google Scholar] [CrossRef]
- Durán Zuazo, V.H.; Rodríguez Pleguezuelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.H.; Fischer, G.; Antoine, J. Agro-Ecological Land Resources Assessment for Agricultural Development Planning. A Case Study of Kenya Resources Data Base and Land Productivity; FAO: Rome, Italy, 1991. [Google Scholar]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Chang. 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Sereenonchai, S.; Arunrat, N. Practical agricultural communication: Incorporating scientific and indigenous knowledge for climate mitigation. Kasetsart J. Soc. Sci. 2018. [Google Scholar] [CrossRef]
- Belfer, E.; Ford, J.D.; Maillet, M. Representation of Indigenous peoples in climate change reporting. Clim. Chang. 2017, 145, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, N.T.T.; Nong, D.; Garschagen, M. Farmers’ decisions to adapt to flash floods and landslides in the Northern Mountainous Regions of Vietnam. J. Environ. Manag. 2019, 252, 109672. [Google Scholar] [CrossRef]
- Phuong, L.T.H.; Biesbroek, G.R.; Sen, L.T.H.; Wals, A.E.J. Understanding smallholder farmers’ capacity to respond to climate change in a coastal community in Central Vietnam. Clim. Dev. 2018, 10, 701–716. [Google Scholar] [CrossRef]
- Nyanga, P.H.; Johnsen, F.H.; Aune, J.B.; Kalinda, T.H. Smallholder farmers’ perceptions of climate change and conservation agriculture: Evidence from Zambia. J. Sustain. Dev. 2011, 4. [Google Scholar] [CrossRef]
- Biesbroek, G.R.; Klostermann, J.E.M.; Termeer, C.J.A.M.; Kabat, P. On the nature of barriers to climate change adaptation. Reg. Environ. Chang. 2013, 13, 1119–1129. [Google Scholar] [CrossRef]
- Berkes, F. Evolution of co-management: Role of knowledge generation, bridging organizations and social learning. J. Environ. Manag. 2009, 90, 1692–1702. [Google Scholar] [CrossRef]
- Adger, W.N.; Barnett, J.; Brown, K.; Marshall, N.; O’Brien, K. Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Chang. 2013, 3, 112–117. [Google Scholar] [CrossRef]
- Binh, D.K.N.T.; Phuong, L.T.V.; Douglas, I.; Van De, N.; Mcmorrow, J.; Lindley, S.; Van, T.T.; Thanh, L.H.; Tho, N. Local knowledge and economic realities affecting soil erosion in the Rach Rat catchment, Vietnam. Geogr. Res. 2008, 46, 17–26. [Google Scholar] [CrossRef]
Soil Type | K Value [57] | Area (Hectares) |
---|---|---|
Arenic Acrisols | 0.28 | 6768 |
Ferralic Arcrisols | 0.32 | 944 |
Dystric Fluvisols | 0.44 | 158 |
Scene | Path/Row | Acquisition Date | Land Cloud Cover (%) |
---|---|---|---|
LC81250492019035LGN00 | 125/49 | 04/02/2019 | 15.50 |
LC81250492019051LGN00 | 125/49 | 20/02/2019 | 10.05 |
LC81250492019099LGN00 | 125/49 | 09/04/2019 | 17.50 |
LC81250492019115LGN00 | 125/49 | 25/04/2019 | 6.80 |
LC81250492019163LGN00 | 125/49 | 12/06/2019 | 45.35 |
LC81250492019275LGN00 | 125/49 | 02/10/2019 | 14.31 |
Land Use Type | Slope (Degrees) | ||||
---|---|---|---|---|---|
0–5 | 5–8 | 8–10 | 10–15 | >15 | |
Natural forest, Grassland, Shrub | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Acacia, Perennial crops | 0.50 | 0.60 | 0.80 | 0.90 | 1.00 |
Rice, Cassava, Corn | 0.27 | 0.30 | 0.40 | 0.45 | 0.5 |
Residential areas, building | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 |
C Value | Mean | Degrees of Freedom | Sig (p-Value) |
---|---|---|---|
NIK farming system | 0.164 ± 0.040 | 29,320.53 | 0.000 |
IK farming system | 0.150 ± 0.041 |
Slope (Degrees) | Soil Type | Number of Point (IK/NIK) | Average of Soil Erosion Rate (t/ha/year) | Sig (p-Value) | |
---|---|---|---|---|---|
IK | NIK | ||||
4–5 | Ferralic Arcrisols | 134/24 | 238 | 301 | 0.025 |
9–10 | Ferralic Arcrisols | 244/53 | 553 | 678 | 0.040 |
14–15 | Ferralic Arcrisols | 308/121 | 888 | 1005 | 0.049 |
19–20 | Ferralic Arcrisols | 269/128 | 1181 | 1495 | 0.047 |
Items | Unit | Results |
---|---|---|
1. Number of respondents | Respondents | 84 |
Male | % | 69.04 |
Female | % | 31.96 |
2. Average of age | Age | 40 |
3. Education | % | |
No formal education | 15.48 | |
Primary school | 42.86 | |
Secondary school | 27.38 | |
High school | 13.10 | |
University/college | 1.19 | |
4. Poverty rate | % | 26.19 |
5. Number of labors | labors/household | 2.47 |
6. Household income (million VND/month) * | % | |
<1 | 30.95 | |
1–2 | 29.76 | |
2–4 | 25.00 | |
>4 | 14.29 | |
7. Income from agriculture activities | % | 81.26 |
No. | Adaptive Activities | AMs |
---|---|---|
AM1 | Adjusting planting calendars |
|
AM2 | Adjusting planting techniques |
|
AM3 | Using native varieties |
|
AM4 | Diversifying crops and varieties |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, C.V.; Pham, T.G.; Nguyen, T.Q.; Nguyen, L.H.K.; Tran, P.T.; Le, Q.N.P.; Nguyen, M.T.H. Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam. Appl. Sci. 2020, 10, 5091. https://doi.org/10.3390/app10155091
Huynh CV, Pham TG, Nguyen TQ, Nguyen LHK, Tran PT, Le QNP, Nguyen MTH. Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam. Applied Sciences. 2020; 10(15):5091. https://doi.org/10.3390/app10155091
Chicago/Turabian StyleHuynh, Chuong Van, Tung Gia Pham, Tan Quang Nguyen, Linh Hoang Khanh Nguyen, Phuong Thi Tran, Quy Ngoc Phuong Le, and Mai Thi Hong Nguyen. 2020. "Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam" Applied Sciences 10, no. 15: 5091. https://doi.org/10.3390/app10155091
APA StyleHuynh, C. V., Pham, T. G., Nguyen, T. Q., Nguyen, L. H. K., Tran, P. T., Le, Q. N. P., & Nguyen, M. T. H. (2020). Understanding Indigenous Farming Systems in Response to Climate Change: An Investigation into Soil Erosion in the Mountainous Regions of Central Vietnam. Applied Sciences, 10(15), 5091. https://doi.org/10.3390/app10155091