Application of a Prediction Model for Ambient Noise Levels and Acoustical Capacity for Living Rooms in Nursing Homes Hosting Older People with Dementia
Abstract
1. Introduction
2. Theoretical Background
3. Methods
4. Results
4.1. Acoustic and Occupancy Data in the NH Living Room
4.2. Optimization of the g Value for Prediction of Ambient Noise Levels
4.3. Acoustical Capacity Pre- and Post-Intervention
5. Discussion
6. Conclusions
- In the living room of a nursing home hosting people with BPSD, the prediction model gave the best results with a set of parameters that deviates considerably from those proposed for other eating establishments; namely, c = 0.5 dB/dB, Ap = 0.2 m2 and g = 9;
- The admissible ambient noise level used as reference in determining the threshold for sufficient quality of verbal communication had to be adjusted to LN,A = 59 dB to return realistic values of acoustical capacity for the living room;
- The acoustical retrofit intervention implemented in the living room of the AcustiCare case study increased the acoustical capacity of the space by 27 people, leading to a much lower occupancy saturation ratio under normal functioning conditions and an improved quality of verbal communication from “insufficient” to “satisfactory”.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van den Bosch, K.A. Safe and Sound: Soundscape Research in Special Needs Care; University of Groningen: Groningen, The Netherlands, 2015. [Google Scholar]
- Brown, J.; Fawzi, W.; Shah, A.; Joyce, M.; Holt, G.; McCarthy, C.; Solomon-Ayeh, K. Low stimulus environments: Reducing noise levels in continuing care. BMJ Open Qual. 2016, 5, u207447. [Google Scholar] [CrossRef]
- Peng, J.; Zeng, Y.; Zhao, L.; Zeng, J. An investigation of acoustical environments in the elderly care facilities. Appl. Acoust. 2018, 137, 45–50. [Google Scholar] [CrossRef]
- Sanford, A.M.; Orrell, M.; Tolson, D.; Abbatecola, A.M.; Arai, H.; Bauer, J.M.; Goel, A. An International Definition for “Nursing Home”. J. Am. Med Dir. Assoc. 2015, 16, 181–184. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing: 1950–2050; Department of Economic and Social Affairs—Population Division, United Nations Publications: New York, NY, USA, 2001. [Google Scholar]
- Van den Bosch, K.A.; Andringa, T.C.; Başkent, D.; Vlaskamp, C. The Role of Sound in Residential Facilities for People With Profound Intellectual and Multiple Disabilities. J. Policy Pract. Intellect. Disabil. 2016, 13, 61–68. [Google Scholar] [CrossRef]
- Aletta, F.; Botteldooren, D.; Thomas, P.; Vander Mynsbrugge, T.; De Vriendt, P.; Van de Velde, D.; Devos, P. Monitoring Sound Levels and Soundscape Quality in the Living Rooms of Nursing Homes: A Case Study in Flanders (Belgium). Appl. Sci. 2017, 7, 874. [Google Scholar] [CrossRef]
- Aletta, F.; Vander Mynsbrugge, T.; Van de Velde, D.; De Vriendt, P.; Thomas, P.; Filipan, K.; Devos, P. Awareness of 'sound' in nursing homes: A large-scale soundscape survey in Flanders (Belgium). Build. Acoust. 2018, 25, 43–59. [Google Scholar] [CrossRef]
- Van den Bosch, K.A.; Andringa, T.C.; Post, W.J.; Ruijssenaars, W.A.; Vlaskamp, C. The relationship between soundscapes and challenging behavior: A small-scale intervention study in a healthcare organization for individuals with severe or profound intellectual disabilities. Build. Acoust. 2018, 25, 123–135. [Google Scholar] [CrossRef]
- Hayne, M.J.; Fleming, R. Acoustic design guidelines for dementia care facilities. In Proceedings of the Internoise 2014 Conference, Melbourne, Australia, 16–19 November 2014. [Google Scholar]
- Fleming, R.; Purandare, N. Long-term care for people with dementia: Environmental design guidelines. Int. Psychogeriatr. 2010, 22, 1084–1096. [Google Scholar] [CrossRef]
- Devos, P.; Aletta, F.; Thomas, P.; Petrovic, M.; Vander Mynsbrugge, T.; Van de Velde, D.; Botteldooren, D. Designing Supportive Soundscapes for Nursing Home Residents with Dementia. Int. J. Environ. Res. Public Health 2019, 16, 4904. [Google Scholar] [CrossRef]
- Thomas, P.; Aletta, F.; Filipan, K.; Vander Mynsbrugge, T.; De Geetere, L.; Dijckmans, A.; Devos, P. Noise environments in nursing homes: An overview of the literature and a case study in Flanders with quantitative and qualitative methods. Appl. Acoust. 2020, 159, 107103. [Google Scholar] [CrossRef]
- Milisen, K.; Abraham, I.; Siebens, K.; Darras, E.; Dierckx de Casterlé, B. Work environment and workforce problems: A cross-sectional questionnaire survey of hospital nurses in Belgium. Int. J. Nurs. Stud. 2006, 43, 745–754. [Google Scholar] [CrossRef]
- Xie, H.; Kang, J.; Mills, G.H. Clinical review: The impact of noise on patients' sleep and the effectiveness of noise reduction strategies in intensive care units. Crit. Care 2009, 13, 208. [Google Scholar] [CrossRef]
- Xie, H.; Kang, J. The acoustic environment of intensive care wards based on long period nocturnal measurements. Noise Health 2012, 14, 230–236. [Google Scholar]
- Gopinath, B.; Thiagalingam, A.; Teber, E.; Mitchell, P. Exposure to workplace noise and the risk of cardiovascular disease events and mortality among older adults. Prev. Med. 2011, 53, 390–394. [Google Scholar] [CrossRef]
- Passchier-Vermeer, W.; Passchier, W.F. Noise exposure and public health. Environ. Health Perspectve 2000, 108, 123–131. [Google Scholar]
- World Health Organization. Burden of Disease from Environmental Noise; WHO Regional Office for Europe: Copenhagen, Denmark, 2011. [Google Scholar]
- Śliwińska-Kowalska, M.; Zaborowski, K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Permanent Hearing Loss and Tinnitus. Int. J. Environ. Res. Public Health 2017, 14, 1139. [Google Scholar] [CrossRef]
- Department of Health. Health Technical Memorandum 08-01: Acoustics; Specialist Services; Department of Health: London, UK, 2013. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/144248/HTM_08-01.pdf (accessed on 12 May 2020).
- Graham, M.E. Re-socialising sound: Investigating sound, selfhood and intersubjectivity among people living with dementia in long-term care. Sound Stud. 2018. [Google Scholar] [CrossRef]
- Devos, P.; Aletta, F.; Vander Mynsbrugge, T.; Thomas, P.; Filipan, K.; Petrovic, M.; Botteldooren, D. Soundscape Design for Management of Behavioral Disorders: A Pilot Study among Nursing Home Residents with Dementia. In Proceedings of the Internoise 2018 Conference, Chicago, IL, USA, 26–29 August 2018. [Google Scholar]
- Rindel, J.H. Verbal communication and noise in eating establishments. Appl. Acoust. 2010, 71, 1156–1161. [Google Scholar] [CrossRef]
- Devos, P.; Thomas, P.; Aletta, F.; Vander Mynsbrugge, T.; De Vriendt, P.; Van de Velde, D.; Botteldooren, D. Towards understanding healthy and supportive acoustic environments: The case of a nursing home. In Proceedings of the International Conference on Acoustics ICA 2019, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Van Hout, N.H.; Hak, C.C.; Suren, S.; Kort, H.S. Acoustic measurements of sound levels in common rooms and sleeping rooms of care facilities for older adults. Gerontechnology 2014, 13, 86–87. [Google Scholar]
- Wiratha, M.S.; Tsaih, L. Acoustic comfort in long-term care facilities based on listening impressions from normal hearing individuals. Proc. Meet. Acoust. 2015, 25, 015003. [Google Scholar] [CrossRef]
- Rindel, J.H. The acoustics of places for social gatherings. In Proceedings of the Euronoise 2015 Conference, Maastricht, The Netherlands, 31 May–3 June 2015; pp. 2429–2436. [Google Scholar]
- Rindel, J.H. Acoustical capacity as a means of noise control in eating establishments. In Proceedings of the Joint Baltic-Nordic Acoustic Meeting BNAM 2012, Odense, Denmark, 18–20 June 2012. [Google Scholar]
- Hodgson, M.; Steininger, G.; Razavi, Z. Measurement and prediction of speech and noise levels and the Lombard effect in eating establishments. J. Acoust. Soc. Am. 2007, 121, 2023–2033. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 3382-2:2008 Acoustics—Measurement of Room Acoustic Parameters—Part 2: Reverberation Time in Ordinary Rooms; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Fernandez-Prieto, J.A.; Cañada-Bago, J.; Gadeo-Martos, M.A. Wireless Acoustic Sensor Nodes for Noise Monitoring in the City of Linares (Jaén). Sensors 2020, 20, 124. [Google Scholar] [CrossRef]
- Alías, F.; Alsina-Pagès, R.M. Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. J. Sens. 2019, 7634860. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Thomas, P.; Dominguez, F.; Dauwe, S.; Touhafi, A.; Dhoedt, B.; Botteldooren, D. On the ability of consumer electronics microphones for environmental noise monitoring. J. Environ. Monit. 2011, 13, 544–552. [Google Scholar] [CrossRef]
- Picaut, J.; Can, A.; Fortin, N.; Ardouin, J.; Lagrange, M. Low-Cost Sensors for Urban Noise Monitoring Networks—A Literature Review. Sensors 2020, 20, 2256. [Google Scholar] [CrossRef]
- Flemish Government. Eindrapport Ontwikkeling Van Specifieke Energieprestatie-Indicatoren Voor Rusthuizen; Department of Welfare, Public Health and Family: Brussels, Belgium, 2010. [Google Scholar]
- Lazarus, H. Prediction of Verbal Communication is Noise—A review: Part 1. Appl. Acoust. 1986, 19, 439–464. [Google Scholar] [CrossRef]
- Lazarus, H. Prediction of verbal communication in noise—A development of generalized SIL curves and the quality of communication (Part 2). Appl. Acoust. 1987, 20, 245–261. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 9921:2003 Ergonomics—Assessment of Speech Communication; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Mosnier, I.; Bebear, J.P.; Marx, M.; Fraysse, B.; Truy, E.; Lina-Granade, G.; Mondain, M.; Sterkers-Artières, F.; Bordure, P.; Robier, A.; et al. Improvement of Cognitive Function After Cochlear Implantation in Elderly Patients. JAMA Otolaryngol. Head Neck Surg. 2015, 141, 442–450. [Google Scholar] [CrossRef]
c (dB/dB) | Average Deviation (dB) | ||
---|---|---|---|
Group Size, g | |||
8 | 9 | 10 | |
0.4 | 1.8 | 2.7 | 3.4 |
0.5 | −0.8 | 0.3 | 1.2 |
0.6 | −4.6 | −3.3 | −2.2 |
0.7 | −11.1 | −9.4 | −7.9 |
Ap (m2) | Average Deviation (dB) | ||
---|---|---|---|
Group Size, g | |||
8 | 9 | 10 | |
0.2 | −0.8 | 0.3 | 1.2 |
0.3 | −0.6 | 0.4 | 1.4 |
0.4 | −0.4 | 0.6 | 1.5 |
0.5 | −0.3 | 0.8 | 1.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devos, P.; Aletta, F.; Thomas, P.; Vander Mynsbrugge, T.; Petrovic, M.; Van de Velde, D.; De Vriendt, P.; Botteldooren, D. Application of a Prediction Model for Ambient Noise Levels and Acoustical Capacity for Living Rooms in Nursing Homes Hosting Older People with Dementia. Appl. Sci. 2020, 10, 4205. https://doi.org/10.3390/app10124205
Devos P, Aletta F, Thomas P, Vander Mynsbrugge T, Petrovic M, Van de Velde D, De Vriendt P, Botteldooren D. Application of a Prediction Model for Ambient Noise Levels and Acoustical Capacity for Living Rooms in Nursing Homes Hosting Older People with Dementia. Applied Sciences. 2020; 10(12):4205. https://doi.org/10.3390/app10124205
Chicago/Turabian StyleDevos, Paul, Francesco Aletta, Pieter Thomas, Tara Vander Mynsbrugge, Mirko Petrovic, Dominique Van de Velde, Patricia De Vriendt, and Dick Botteldooren. 2020. "Application of a Prediction Model for Ambient Noise Levels and Acoustical Capacity for Living Rooms in Nursing Homes Hosting Older People with Dementia" Applied Sciences 10, no. 12: 4205. https://doi.org/10.3390/app10124205
APA StyleDevos, P., Aletta, F., Thomas, P., Vander Mynsbrugge, T., Petrovic, M., Van de Velde, D., De Vriendt, P., & Botteldooren, D. (2020). Application of a Prediction Model for Ambient Noise Levels and Acoustical Capacity for Living Rooms in Nursing Homes Hosting Older People with Dementia. Applied Sciences, 10(12), 4205. https://doi.org/10.3390/app10124205