Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser
Abstract
1. Introduction
2. Operation Principle
2.1. Frequency Conversion Principle
2.2. Simulations of Conversion Performance
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capmany, J.; Beatriz, O.; Daniel, P. A tutorial on microwave photonic filters. J. Lightwave Technol. 2006, 24, 201–229. [Google Scholar] [CrossRef]
- Minasian, R.A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 2006, 54, 832–846. [Google Scholar] [CrossRef]
- Yao, J.p. Microwave photonics. J. Lightwave Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Yang, L.H.; Ren, G.L.; Qiu, Z.L. A novel Doppler frequency offset estimation method for DVB-T system in HST environment. IEEE Trans. Broadcast. 2012, 58, 139–143. [Google Scholar] [CrossRef]
- Hong, Y.; He, D. An improved Doppler frequency offset estimation algorithm of OFDM system under high-speed movement environment. J. Comput. 2013, 8, 3191–3195. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Wang, W.S.; Bechtel, J.H. High-isolation photonic microwave mixer/link for wideband signal processing and transmission. J. Lightwave Technol. 2003, 21, 1224–1232. [Google Scholar]
- Xue, X.X.; Zheng, X.P.; Zhang, H.Y.; Zhou, B.K. Idler-free photonic microwave mixer using a broadband optical source and cascaded phase modulators. Opt. Lett. 2012, 37, 1451–1453. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.K.; Burns, W.K.; Bulmer, C.H. Microwave-optical mixing in LiNbO/sub 3/modulators. IEEE Trans. Microw. Theory Tech. 1993, 41, 2383–2391. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yu, J.J.; Chang, G.K. Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photon. Technol. Lett. 2005, 18, 265–267. [Google Scholar]
- Wu, B.l.; Tang, Y.; Sun, J.; Jian, S.s. Photonic microwave signal mixing using Sagnac-Loop-based modulator and polarization-dependent modulation. IEEE Photon. J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Yin, C.J.; Li, J.Q.; Li, B.Y.; Lv, Q.; Dai, J.; Yin, F.L.; Dai, Y.T.; Xu, K. Microwave photonic frequency up-convertor with frequency doubling and compensation of chromatic-dispersion-induced power fading. IEEE Photon. J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, A.J.; Tu, Z.Y. Filter-free photonic microwave upconverter with frequency quadrupling. Appl. Opt. 2019, 58, 7915–7920. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Z.; Pan, S.L. Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter. J. Lightwave Technol. 2016, 34, 4729–4735. [Google Scholar] [CrossRef]
- Zhang, J.; Chan, E.H.W.; Wang, X.; Feng, X.; Guan, B. High conversion efficiency photonic microwave mixer with image rejection capability. IEEE Photon. J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Zhang, W.; Wang, Y.; Zhang, H.X. Photonic microwave and mm-wave mixer for multichannel fiber transmission. J. Lightwave Technol. 2017, 35, 1566–1574. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Jiang, W. Fundamental/Subharmonic Photonic Microwave I/Q Up-Converter for Single Sideband and Vector Signal Generation. IEEE Trans. Microw. Theory Tech. 2018, 66, 4282–4292. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, S.; Li, M. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach–Zehnder modulator. Opt. Comm. 2018, 428, 131–135. [Google Scholar] [CrossRef]
- Lee, K.H.; Choi, W.Y.; Leem, Y.A. Harmonic millimeter-wave generation and frequency up-conversion using a passively mode-locked multisection DFB laser under external optical injection. IEEE Photon. Technol. Lett. 2007, 19, 161–163. [Google Scholar] [CrossRef]
- Huchard, M.; Chanclou, P.; Charbonnier, B. 60 GHz radio signal up-conversion and transport using a directly modulated mode-locked laser. In Proceedings of the 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, Gold Coast, QLD, Australia, 9 September–3 October 2008. [Google Scholar]
- Xu, X.Y.; Wu, J.Y.; Tan, M.X. Microcomb-based photonic local oscillator for broadband microwave frequency conversion. In Proceedings of the Optical Fiber Communication Conference. Optical Society of America, San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Turani, Z.; Fatemizadeh, E.; Blumetti, T.; Daveluy, S.; Moraes, A.F.; Chen, W. Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma. Cancer Res. 2019, 79, 2021–2030. [Google Scholar] [CrossRef]
- Yang, S.Q.; Li, Z.H.; Yuan, S.Z. Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator. IEEE Photon. Technol. Lett. 2002, 14, 1494–1496. [Google Scholar] [CrossRef]
- Mei, J.W.; Xiao, X.S.; Yang, C.X. 1 μm wavelength swept fiber laser based on dispersion-tuning technique. Chinese Opt. Lett. 2015, 13, 091403. [Google Scholar]
- Tozburun, S.; Siddiqui, M.; Vakoc, B.J. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express. 2014, 22, 3414. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Wojtkowski, M.; Fujimoto, J.G. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express. 2006, 14, 3225–3237. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, A.Q.; Feng, X.H.; Wai, P.K.A. Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks. Opt. Express. 2013, 21, 30255–30265. [Google Scholar] [CrossRef]
Conversion | Input Frequency | Output Frequency (Simulation) | Output Frequency (Experiment) |
---|---|---|---|
Down | 5 GHz | 4.935 GHz | 4.936 GHz |
Up | 5 GHz | 5.067 GHz | 5.067 GHz |
SMF Length | Up-Conversion for 5 GHz Input | Up-Conversion for 8 GHz Input | Up-Conversion for 16 GHz Input |
---|---|---|---|
1.04 km | 5.067 GHz | 8.094 GHz | 16.208 GHz |
3.11 km | 5.207 GHz | 8.369 GHz | 16.629 GHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Cao, Y.; Wang, L.; Wang, G.; Feng, X.; Guan, B.-O. Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Appl. Sci. 2020, 10, 3813. https://doi.org/10.3390/app10113813
Kong Y, Cao Y, Wang L, Wang G, Feng X, Guan B-O. Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Applied Sciences. 2020; 10(11):3813. https://doi.org/10.3390/app10113813
Chicago/Turabian StyleKong, Youxue, Yuan Cao, Lin Wang, Guangying Wang, Xinhuan Feng, and Bai-Ou Guan. 2020. "Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser" Applied Sciences 10, no. 11: 3813. https://doi.org/10.3390/app10113813
APA StyleKong, Y., Cao, Y., Wang, L., Wang, G., Feng, X., & Guan, B.-O. (2020). Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Applied Sciences, 10(11), 3813. https://doi.org/10.3390/app10113813