Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control
Abstract
:1. Introduction
2. Non-Exhaust PM Emissions and Their Relation to Air Pollution in the Vicinity of Roads and Crossroads
- The car body: some particles from the vehicle’s consumable parts are released into the air; they may contain small amounts of metal like Zn and Fe [35].
- The road surface: PM from road-surface erosion containing characteristic compounds such as bitumen, cement, and resins [33].
- Paints: the composition of the paint intended for road-surface painting suggests that PM from this source may contain Pb and Ti [54].
3. Types of Road Surfaces and Their Importance in the Non-Exhaust Emissions of PM
- susceptible: surfaces with a structure that deforms plastically under the influence of loads (sett, gravel, and bitumen surfaces located on susceptible substrates).
- semi-rigid: asphalt surfaces with a foundation made of concrete, lean concrete, aggregates, or stabilized soils.
- asphalt concrete (AC), stone mastic asphalt (SMA), mastic asphalt (MA), very thin-layered asphalt concrete (BBTM), and porous asphalt (PA) [110].
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buckeridge, D.L.; Glazier, R.; Harvey, B.J.; Escobar, M.; Amrhein, C.; Frank, J. Effect of motor vehicle emissions on respiratory health in an urban area. Environ. Health Perspect. 2002, 110, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Meng, Q.; Weisel, C.; Shalat, S.; Laumbach, R.; Ohman-Strickland, P.; Black, K.; Rodriguez, M.; Bonanno, L. Acute Short-Term Exposures to PM2.5 Generated by Vehicular Emissions and Cardiopulmonary Effects in Older Adults. Epidemiology 2006, 17, 213–214. [Google Scholar] [CrossRef]
- Harrison, R.M.; Jones, A.M.; Lawrence, R.G. Major component composition of PM10 and PM2.5 from roadside and urban background sites. Atmos. Environ. 2004, 38, 4531–4538. [Google Scholar] [CrossRef]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Health Effects Institute. HEI Panel on the Health Effects of Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysek, M.; Monn, C.; Vonmont, H. Chemical characterization of PM2,5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Masiol, M.; Hofer, A.; Squizzato, S.; Piazza, R.; Rampazzo, G.; Pavoni, B. Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: A source apportionment. Atmos. Environ. 2012, 60, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Rissler, J.; Swietlicki, E.; Bengtsson, A.; Boman, C.; Pagels, J.; Sandström, T.; Blomberg, A.; Löndahl, J. Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. J. Aerosol Sci. 2012, 48, 18–33. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Chemical composition and mass closure of ambient particulate matter at a crossroads and a highway in Katowice, Poland. Environ. Prot. Eng. 2015, 41, 15–29. [Google Scholar]
- Rogula-Kozłowska, W. Traffic-Generated Changes in the Chemical Characteristics of Size-Segregated Urban Aerosols. Bull. Environ. Contam. Toxicol. 2014, 93, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Pastuszka, J.S.; Talik, E. Influence of Vehicular Traffic on Concentration and Particle Surface Composition of PM10 and PM2.5 in Zabrze, Poland. Pol. J. Environ. Stud. 2008, 17, 539–548. [Google Scholar]
- Enroth, J.; Saarikoski, S.; Niemi, J.; Kousa, A.; Ježek, I.; Močnik, G.; Carbone, S.; Kuuluvainen, H.; Rönkkö, T.; Hillamo, R.; et al. Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area. Atmos. Chem. Phys. 2016, 16, 5497–5512. [Google Scholar] [CrossRef]
- Geller, M.D.; Ntziachristos, L.; Mamakos, A.; Samaras, Z.; Schmitz, D.A.; Froines, J.R.; Sioutas, C. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos. Environ. 2006, 40, 6988–7004. [Google Scholar] [CrossRef]
- Harrison, R.M.; Tilling, R.; Callén Romero, M.S.; Harrad, S.; Jarvis, K. A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmos. Environ. 2003, 37, 2391–2402. [Google Scholar] [CrossRef]
- Mauderly, J.L. Toxicological and epidemiological evidence for health risks from inhaled engine emissions. Environ. Health Perspect. 1994, 102, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Shi, Z.; Pope, F.D.; Harrison, R.M. Characterization of Traffic-Related Particulate Matter Emissions in a Road Tunnel in Birmingham, UK: Trace Metals and Organic Molecular Markers. Aerosol Air Qual. Res. 2017, 17, 117–130. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Kozielska, B.; Klejnowski, K. Concentration, Origin and Health Hazard from Fine Particle-Bound PAH at Three Characteristic Sites in Southern Poland. Arch. Environ. Contam. Toxicol. 2013, 91, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kopiec, P.; Kozielska, B.; Rogula-Kozłowska, W. Road Traffic Effects in Size-segregated Ambient Particle-bound PAHs. Int. J. Environ. Res. 2016, 10, 531–542. [Google Scholar]
- Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Klejnowski, K.; Blaszczyk, J. Influence of vehicular traffic on concentration and mass size distribution of two fractions of carbon in an urban area atmospheric aerosol. Rocz. Ochr. Sr. 2013, 15, 1623–1644. [Google Scholar]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigoratos, T.; Martini, G. Non-Exhaust Traffic Related Emissions. Brake and Tyre Wear PM. JRC Science and Policy Reports. Literature Review; European Commission Joint Research Centre Institute of Energy and Transport: Luxembourg, 2014. [Google Scholar]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources—A review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef] [Green Version]
- Badyda, A.J.; Dąbrowiecki, P.; Czechowski, P.O.; Majewski, G.; Doboszyńska, A. Traffic-Related Air Pollution and Respiratory Tract Efficiency. Adv. Exp. Med. Biol. 2014, 834, 31–38. [Google Scholar]
- Badyda, A.J.; Dąbrowiecki, P.; Czechowski, P.O.; Majewski, G. Risk of bronchi obstruction among non-smokers—Review of environmental factors affecting bronchoconstriction. Respir. Physiol. Neurobiol. 2014, 209, 39–46. [Google Scholar] [CrossRef] [PubMed]
- De Kok, T.M.C.M.; Driece, H.A.L.; Hogervorst, J.G.F.; Briedé, J.J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Grynkiewicz Bylina, B.; Rakwic, B.; Pastuszka, J.S. Assessment of Exposure to Traffic-Related Aerosol and to Particle-Associated PAHs in Gliwice, Poland. Pol. J. Environ. Stud. 2005, 14, 117–123. [Google Scholar]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; Deminter, J.T.; Park, J.S. Characterization of metals emitted from motor vehicles. Res. Rep. Health Eff. Inst. 2006, 133, 77–88. [Google Scholar]
- Geller, M.D.; Sardar, S.B.; Phuleria, H.; Fine, P.M.; Sioutas, C. Measurements of Particle Number and Mass Concentrations and Size Distributions in a Tunnel Environment. Environ. Sci. Technol. 2005, 39, 8653–8663. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.-H.; Kim, H.; Lee, J.; Lee, S. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 2013, 458–460, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, A.J.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, A.J.; Harrison, R.M.; Boulter, P.G.; Mccrae, I.S. Estimation of particle resuspension source strength on a major London Road. Atmos. Environ. 2007, 41, 8007–8020. [Google Scholar] [CrossRef]
- Warner, L.R.; Sokhi, R.; Luhana, L.; Boulter, P.G. Non-Exhaust Particle Emissions from Road Transport: A Literature Review. Unpublished Report PR/SE/213/00. 2001. Available online: http://lat.eng.auth.gr/particulates/old_website/eterg/files/PR_SE_~1.PDF (accessed on 27 October 2017).
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Pastuszka, J.S.; Talik, E. Właściwości aerozolu ze źródeł komunikacyjnych; IPIŚ PAN: Zabrze, Poland, 2011; Volume 80, p. 111. [Google Scholar]
- Oyama, B.S.; Andrade, M.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R. Chemical characterization of organic particulate matter from on-road traffic in São Paulo, Brazil. Atmos. Chem. Phys. 2016, 16, 14397–14408. [Google Scholar] [CrossRef]
- Dziugieł, M.; Bogacki, M. Metodyka wyznaczania emisji niezorganizowanej pyłu do powietrza z dróg oraz eksploatacji składowisk w kopalni odkrywkowej surowców mineralnych. Przegląd Górniczy 2013, 12, 68–74. (In Polish) [Google Scholar]
- The Scientific Basis of Street Cleaning Activities as Road Dust Mitigation Measure, Action B7. 2013. Available online: http://airuse.eu/wp-content/uploads/2013/11/B7-3-ES_road-cleaning.pdf (accessed on 27 October 2017).
- Ravensworth Underground Mine-Coal Mine Particulate Matter Control Best Management Practice Determination; Xstrata Coal: Zug, Switzerland, 1979.
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [PubMed]
- Pirjola, L.; Johansson, C.; Kupiainen, K.; Stojiljkovic, A.; Karlsson, H.; Hussein, T. Road Dust Emissions from Paved Roads Measured Using Different Mobile Systems. J. Air Waste Manag. 2010, 60, 1422–1433. [Google Scholar] [CrossRef]
- Kupiainen, K.; Tervahattu, H.; Räisänen, M. Experimental studies about the impact of traction sand on urban road dust composition. Sci. Total Environ. 2003, 308, 175–184. [Google Scholar] [CrossRef]
- Garg, B.D.; Cadle, S.H.; Mulawa, P.A.; Groblicki, P.J.; Laroo, C.; Parr, G.A. Brake Wear Particulate Matter Emissions. Environ. Sci. Technol. 2000, 34, 4463–4469. [Google Scholar] [CrossRef]
- Hildemann, L.M.; Markowski, G.R.; Cass, G.R. Chemical composition of emissions from urban sources of fine organic aerosol. Environ. Sci. Technol. 1991, 25, 744–759. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Kennedy, P.; Gadd, J. Preliminary Examination of Trace Elements in Tyres, Brake Pads, and Road Bitumen in New Zealand; Infrastructure Auckland: Auckland, New Zealand, 2003. [Google Scholar]
- Kennedy, P.; Gadd, J.; Moncrieff, I. Emission Factors for Contaminants Released by Motor Vehicles in New Zealand; Infrastructure Auckland: Auckland, New Zealand, 2002. [Google Scholar]
- Legret, M.; Pagotto, C. Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci. Total Environ. 1999, 235, 143–150. [Google Scholar] [CrossRef]
- Westerlund, K.G.; Johansson, C. Emission of Metals and Particulate Matter Due to Wear of Brake Linings in Stockholm. Air Pollut. 2002, 10, 793–802. [Google Scholar]
- Dongarrà, G.; Manno, E.; Varrica, D. Possible markers of traffic-related emissions. Environ. Monit. Assess. 2009, 154, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ingo, G.M.; D’Uffizi, M.; Falso, G.; Bultrini, G.; Padeletti, G. Thermal and microchemical investigation of automotive brake pad wear residues. Thermochim. Acta 2004, 418, 61–68. [Google Scholar] [CrossRef]
- Przybek, P. Materiały Malarskie—Pomoc Dydaktyczna. 2004. Available online: http://bianda.cba.pl/tppch/sload/materialy_malarskie.pdf (accessed on 9 August 2017).
- Harrison, R.M.; Hester, R.E. Environmental Impacts of Road Vehicles: Past, Present and Future; Royal Society of Chemistry: London, UK, 2017. [Google Scholar]
- Harrison, R.M.; Jones, A.M.; Barrowcliffe, R. Field study of the influence of meteorological factors and traffic volumes upon suspended particle mass at urban roadside sites of differing geometries. Atmos. Environ. 2004, 38, 6361–6369. [Google Scholar] [CrossRef]
- Amato, F.; Schaap, M.; Denier van der Gon, H.A.C.; Pandolfi, M.; Alastuey, A.; Keuken, M.; Querol, X. Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. Atmos. Environ. 2012, 62, 352–358. [Google Scholar] [CrossRef]
- Olszowski, T. Changes in PM10 concentration due to large-scale rainfall. Arab. J. Geosci. 2016, 9, 160. [Google Scholar] [CrossRef]
- Amato, F.; Karanasiou, A.; Cordoba, P.; Alastuey, A.; Moreno, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; Querol, X. Effects of Road Dust Suppressants on PM Levels in a Mediterranean Urban Area. Environ. Sci. Technol. 2014, 48, 8069–8077. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, P.O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. [Google Scholar] [CrossRef] [PubMed]
- Klejnowski, K.; Rogula-Kozłowska, W.; Łusiak, T. Some metals and polycyclic aromatic hydrocarbons in fugitive PM10 emissions from the coking process. Environ. Prot. Eng. 2012, 38, 59–71. [Google Scholar]
- Konieczyński, J.; Zajusz-Zubek, E. Distribution of selected trace elements in dust containment and flue gas desulphurisation products from coal-fired power plants. Arch. Environ. Prot. 2011, 37, 3–14. [Google Scholar]
- Kozielska, B.; Konieczyński, J. Polycyclic aromatic hydrocarbons in dust emitted from stoker-fired boilers. Environ. Technol. 2007, 28, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Kozielska, B.; Konieczyński, J. Polycyclic aromatic hydrocarbons in particulate matter emitted from coke oven battery. Fuel 2015, 144, 327–334. [Google Scholar] [CrossRef]
- Rogula-Kopiec, P.; Rogula-Kozłowska, W.; Kozielska, B.; Sówka, I. PAH Concentrations Inside a Wood Processing Plant and the Indoor Effects of Outdoor Industrial Emissions. Pol. J. Environ. Stud. 2015, 24. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Konieczyński, J. Dynamics of trace elements release in a coal pyrolysis process. Fuel 2003, 82, 1281–1290. [Google Scholar] [CrossRef]
- Dahl, A.; Gharibi, A.; Swietlicki, E.; Gudmundsson, A.; Bohgard, M.; Ljungman, A.; Blomgvist, G.; Gustafsson, M. Traffic-generated emissions of ultrafine particles from pavement-tire interface. Atmos. Environ. 2006, 40, 1314–1323. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prévôt, A.S.H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; et al. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmos. Chem. Phys. 2011, 11, 2917–2931. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Omstedt, G.; Bringfelt, B.; Johansson, C. A model for vehicle-induced non-tailpipe emissions of particles along Swedish roads. Atmos. Environ. 2005, 39, 6088–6097. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. J. Air Waste Manag. 2013, 63, 136–149. [Google Scholar] [CrossRef]
- Hjortenkrans, D.S.T.; Bergbäck, B.G.; Häggerud, A.V. Metal Emissions from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 2007, 41, 5224–5230. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Norman, M.; Burman, L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009, 43, 4681–4688. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Ruiz, C.R.; Artinano, B.; Hansson, H.C.; Harrison, R.M.; Buringh, E.; ten Brink, H.M.; Lutz, M.; Bruckmann, P.; et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 2004, 38, 6547–6555. [Google Scholar] [CrossRef]
- Lenschow, P.; Abraham, H.J.; Kutzner, K.; Lutz, M.; Preuß, J.D.; Reichenbacher, W. Some ideas about the sources of PM10. Atmos. Environ. 2001, 35, 23–33. [Google Scholar] [CrossRef]
- Amato, F.; Karanasiou, A.; Moreno, T.; Alastuey, A.; Orza, J.A.G.; Lumbreras, J.; Borge, R.; Boldo, E.; Linares, C.; Querol, X. Emission factors from road dust resuspension in a Mediterranean freeway. Atmos. Environ. 2012, 61, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Beddows, D.C.S.; Dall’Osto, M. PMF Analysis of Wide-Range Particle Size Spectra Collected on a Major Highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Jones, A.M.; Gietl, J.; Yin, J.; Green, D.C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 2012, 46, 6523–6529. [Google Scholar] [CrossRef] [PubMed]
- Kuhlbusch, T.A.J.; John, A.C.; Quass, U. Sources and source contributions to fine particles. Biomarkers 2009, 14, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, S.K. The characterization of aerosols distributed with respect to size and chemical composition—I. J. Aerosol Sci. 1970, 1, 295–307. [Google Scholar] [CrossRef]
- Friedlander, S.K. The characterization of aerosols distributed with respect to size and chemical composition—II. J. Aerosol Sci. 1971, 2, 331–340. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Abu-Allaban, M.; Gillies, J.A.; Gertler, A.W.; Clayton, R.; Profitt, D. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos. Environ. 2003, 37, 5283–5293. [Google Scholar] [CrossRef]
- Kam, W.; Liacos, J.W.; Schauer, J.J.; Delfino, R.J.; Sioutas, C. Size-segregated composition of particulate matter (PM) in major roadways and surface streets. Atmos. Environ. 2012, 55, 90–97. [Google Scholar] [CrossRef]
- Tervahattu, H.; Kupiainen, K.J.; Räisänen, M.; Makela, T.; Hillamo, R. Generation of urban road dust from anti-skid and asphalt concrete aggregates. J. Hazard. Mater. 2006, 132, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Keuken, M.; Denier van der Gon, H.; van der Valk, K. Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Sci. Total Environ. 2010, 408, 4591–4599. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, B.; Hansson, H.C.; Johansson, C.; Areskoug, H.; Persson, K.; Järvholm, B. Comparative Health Impact Assessment of Local and Regional Particulate Air Pollutants in Scandinavia. Ambio 2005, 34, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Von Uexküll, O.; Skerfving, S.; Doyle, R.; Braungart, M. Antimony in brake pads-a carcinogenic component? J. Clean. Prod. 2005, 13, 19–31. [Google Scholar] [CrossRef]
- Woodside, A.R. Aggregates and Fillers in Asphalt Surfacings: A Guide to Asphalt Surfacings and Treatments Used for the Surface Course of Road Pavements; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 1998. [Google Scholar]
- Watson, J.G.; Chow, J.C. Receptormodels for source apportionment of suspended particles. In Introduction to Environmental Forensics, 2nd ed.; Academic Press: New York, NY, USA, 2007; Volume 2, pp. 279–316. [Google Scholar]
- Chow, J.C. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. J. Air Waste Manag. 1995, 45, 320–382. [Google Scholar] [CrossRef]
- Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Prain, H.D.; Bull, I.D. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [Google Scholar] [CrossRef]
- Rybak, J. Accumulation of Major and Trace Elements in Spider Webs. Water Air Soil Pollut. 2015, 226, 105. [Google Scholar] [CrossRef] [PubMed]
- Richter, P.; Griño, P.; Ahumada, I.; Giordano, A. Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos. Environ. 2007, 41, 6729–6738. [Google Scholar] [CrossRef]
- Gómez, B.; Gómez, M.; Sanchez, J.L.; Fernandez, R.; Palacios, M.A. Platinum and rhodium distribution in airborne particulate matter and road dust. Sci. Total Environ. 2001, 269, 131–144. [Google Scholar] [CrossRef]
- Heck, R.M.; Farrauto, R.J. Automobile exhaust catalysts. Appl. Catal. A 2001, 221, 443–457. [Google Scholar] [CrossRef]
- Virtanen, A.; Keskinen, J.; Ristimäki, J.; Rönkkö, T.; Vaaraslahti, K. Reducing Particulate Emissions in Traffic and Transport; Views and Conclusions from the FINE Particles—Technology. Environment and Health Technology Programme; Tekes: Tampere, Finland, 2006. [Google Scholar]
- AQEG. Particulate Matter in the United Kingdom; DEFRA: London, UK, 2005.
- Fauser, P.; Tjell, J.C.; Bjerg, P.L. Particulate air Pollution, with Emphasis on Traffic Generated Aerosols; Riso National Laboratory and Technikal University of Denmark: Roskilde, Denmark, 1999. [Google Scholar]
- Gadd, J.; Kennedy, P. Preliminary Examination of Organic Compounds present in Tyres, Brake Pads, and Road Bitumen in New Zealand, rev. ed.; Prepared for Ministry of Transport; Infrastructure Auckland: Auckland, New Zealand, 2003. [Google Scholar]
- Boulter, P. A review of Emission Factors and Models for Road Vehicle Non-Exhaust Particulate Matter; Report Prepared for DEFRA; TRL: Wokingham, UK, 2005. [Google Scholar]
- Lindgren, A. Asphalt wear and pollution transport. Sci. Total Environ. 1996, 189–190, 281–286. [Google Scholar] [CrossRef]
- Piłat, J.; Radziszewski, P. Nawierzchnie Asfaltowe; Wydawnictwa Komunikacji I Łączności: Warsaw, Poland, 2007. [Google Scholar]
- Dodds, C.J.; Robson, J.D. The description of road surface roughness. J. Sound Vib. 1973, 31, 1751–1783. [Google Scholar] [CrossRef]
- Robson, J.D. Road surface description and vehicle response. Int. J. Veh. Des. 1979, 1. [Google Scholar] [CrossRef]
- Katalog Typowych Konstrukcji Nawierzchni Podatnych I Półsztywnych. GDDKiA: Warsaw, Poland, 2014. Available online: https://www.gddkia.gov.pl/userfiles/articles/p/prace-naukowo-badawcze-po-roku-2_3432/Weryfikacja%20KataloguTNPiP_Etap4_final_11%2003%202013.pdf (accessed on 11 March 2013).
- Katalog Typowych Konstrukcji Nawierzchni Sztywnych. GDDKiA: Warsaw, Poland, 2014. Available online: https://www.gddkia.gov.pl/userfiles/articles/z/zarzadzenia-generalnego-dyrektor_13901/zarzadzenie%2030%20zalacznik.pdf (accessed on 16 June 2016).
- Gillies, J.A.; Etyemezian, V.; Kuhns, H.; Nikolic, D.; Gillette, D.A. Effect of vehicle characteristics on unpaved road dust emissions. Atmos. Environ. 2005, 39, 2341–2347. [Google Scholar] [CrossRef]
- Gillies, J.A.; Watson, J.G.; Rogers, C.F.; DuBois, D.; Chow, J.C.; Langston, R.; Sweet, J. Long-Term Efficiencies of Dust Suppressants to Reduce PM10 Emissions from Unpaved Roads. J. Air Waste Manag. 1999, 49, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Rogers, C.F.; Chow, J.C.; DuBois, D.; Gillies, J.A.; Derby, J.; Moosmüller, H. Effectiveness Demonstration of Fugitive Dust Control Methods for Public Unpaved Roads and Unpaved Shoulders on Paved Roads; Final Report DRI; DRI: Reno, NV, USA, 1996. [Google Scholar]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside along the main national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Sperling, D.; Bissonette, J.A.; Clevenger, A.P.; Cutshall, C.D.; Dale, V.H.; Fahrig, L.; France, R.L.; Goldman, C.R.; Heanue, K.; et al. Road Ecology. Science and Solutions; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Kozłowski, W.; Surowiecki, A. Kierunki rozwoju konstrukcji nawierzchni dróg wiejskich. Problemy Inżynierii Rolniczej 2011, 1, 173–183. [Google Scholar]
- Nicholls, J. Asphalt Surfacings: A Guide to Asphalt Surfacings and Treatments Used for the Surface Course of Road Pavements; Transport Research Laboratory, E&FN SPON An Imprint of Routledge: London, UK, 1998. [Google Scholar]
- NIOSH. Hazard Review: Health Effects of Occupational Exposure to Asphalt; Department of Health and Human Services [DHHS] and NIOSH: Cincinnati, OH, USA, 2000.
- Szruba, M. Nawierzchnie betonowe. Nowoczesne Budownictwo Inżynieryjne 2016, 10, 56–58. [Google Scholar]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.O.; Alexandrova, O.; Kaloush, K.E. Tire Wear Emissions for Asphalt Rubber and Portland Cement Concrete Pavement Surfaces; Report Submitted to Arizona Department of Transportation; Arizona State University: Tempe, AZ, USA, 2006. [Google Scholar]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Swietlicki, E.; Bohgard, M.; Lindbom, J.; Ljungman, A. Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material. Sci. Total Environ. 2008, 393, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Johansson, C.; Karlsson, H.; Hansson, H.C. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 2008, 42, 688–702. [Google Scholar] [CrossRef]
- Kupiainen, K.J.; Tervahattu, H.; Räisänen, M.; Mäkelä, T.; Aurela, M.; Hillamo, R. Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environ. Sci. Technol. 2005, 39, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Schaap, M.; Manders, A.M.M.; Hendriks, E.C.J.; Cnossen, J.M.; Segers, A.J.S.; Denier van der Gon, H.A.C.; Jozwicka, M.; Sauter, F.; Velders, G.; Matthijsen, J.; et al. Regional Modelling of PM10 over the Netherlands; Technical Report 500099008; Netherlands Environmental Assessment Agency, (PBL): Bilthoven, The Netherlands, 2009. [Google Scholar]
- Sjodin, A.; Ferm, M.; Bjork, A.; Rahmberg, M.; Gudmundsson, A.; Swietlickli, E.; Johansson, C.; Gustafsson, M.; Blomqvist, G. Wear Particles from Road Traffic: A Field, Laboratory and Modelling Study; IVL Report B1830; IVL: Göteborg, Sweden, 2010. [Google Scholar]
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Gudmundsson, A.; Dahl, A.; Jonsson, P.; Swietlicki, E. Factors influencing PM10 emissions from road pavement wear. Atmos. Environ. 2009, 43, 4699–4702. [Google Scholar] [CrossRef]
- Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L.D.; Furger, M.; Buchmann, B. Mobile load simulators—A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces. Atmos. Environ. 2010, 44, 4937–4943. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penkała, M.; Ogrodnik, P.; Rogula-Kozłowska, W. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. Environments 2018, 5, 9. https://doi.org/10.3390/environments5010009
Penkała M, Ogrodnik P, Rogula-Kozłowska W. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. Environments. 2018; 5(1):9. https://doi.org/10.3390/environments5010009
Chicago/Turabian StylePenkała, Magdalena, Paweł Ogrodnik, and Wioletta Rogula-Kozłowska. 2018. "Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control" Environments 5, no. 1: 9. https://doi.org/10.3390/environments5010009
APA StylePenkała, M., Ogrodnik, P., & Rogula-Kozłowska, W. (2018). Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. Environments, 5(1), 9. https://doi.org/10.3390/environments5010009