Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation
Abstract
:1. Introduction
2. Materials and Methods
- -
- Peat (0.1–5 mm) is an inexpensive and effective sorbent suitable for removing various environmental pollutants [33]. Peat has good adsorption properties and is often used as an effective filter material for suspended and dissolved solid particles. Decomposed peat has a relatively high porosity of about 95% [34].
- -
- Wood chips (20–50 mm) and sawdust (0.1–2 mm) are wood by-products, waste materials and low-cost sorbents applied mainly to the removal of organic compounds from wastewater [35,36]. They are also used in green infrastructure to remove the pollutants in stormwater before they enter the environment via runoff.
- -
- Lightweight aggregates (LWAs) are light expanded clay aggregates made of bloated particles of burnt clay. LWAs have good physical properties (high porosity, low water absorption) which enable them to be used as filter media [37]. Pollytag (fraction size: 8–11 mm) is a cheap adsorbent material and a type of LWA produced by granulating and sintering fly ash at a temperature of 1000–1350 °C. Batch tests were carried out on four lightweight aggregates: Polski, Leca, Pollytag and Ceski (Figure 3).
3. Results and Discussion
3.1. Batch Test
3.2. Column Experiment
3.3. Raised Garden Bed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Concerning Urban Wastewater Treatment (Recast) COM/2022/541 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0541 (accessed on 26 November 2023).
- Zhang, W.; Li, J.; Sun, H.C.; Che, W. Pollutant first flush identification and its implications for urban runoff pollution control: A roof and road runoff case study in Beijing, China. Water Sci. Technol. 2021, 83, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, S. Innovative and Reliable Assessment of Polluted Stormwater Runoff for Effective Stormwater Management. Water 2024, 16, 16. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Gao, L. Stormwater treatment for reuse: Current practice and future development—A review. J. Environ. Manag. 2022, 301, 113830. [Google Scholar] [CrossRef] [PubMed]
- Boguniewicz-Zabłocka, J.; Capodaglio, A.G. Analysis of Alternatives for Sustainable Stormwater Management in Small Developments of Polish Urban Catchments. Sustainability 2020, 12, 10189. [Google Scholar] [CrossRef]
- European Commision. 2020 REGULATION (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on minimum requirements for water reuse. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 26 November 2023).
- HELCOM. 2021 Recommendation 23/5-Rev. Reduction of Discharges from Urban Areas Byt the Proper Management of Stormwater Systems. Available online: https://helcom.fi/wp-content/uploads/2021/06/Rec-23-5-Rev.1.pdf (accessed on 26 November 2023).
- Hopkins, K.G.; Grimm, N.B.; York, A.M. Influence of governance structure on green stormwater infrastructure investment. Environ. Sci. Policy 2018, 84, 124–133. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, S.; Singh, A. Assessment of Green Infrastructure for sustainable urban water management. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Xu, C.; Hong, J.; Jia, H.; Liang, S.; Xu, T. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. J. Clean. Prod. 2017, 149, 227–237. [Google Scholar] [CrossRef]
- European Union. 2013 European Union: European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Green Infrastructure (GI)—Enhancing Europe’s Natural Capital, COM/2013/0249 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52013DC024 (accessed on 26 November 2023).
- Mobilia, M.; Longobardi, A.; Sartor, J.F. Including A priori Assessment of Actual Evapotranspiration for Green Roof Daily Scale Hydrological Modelling. Water 2017, 9, 72. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Hersperger, A.; Green, M. infrastructure in strategic spatial plans: Evidence from European urban regions. Urban For. Urban Green. 2019, 40, 17–28. [Google Scholar] [CrossRef]
- Orta-Ortiz, S.; Geneletti, D.M. What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services. Environ. Impact Assess. Rev. 2022, 95, 106802. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Zhou, M. Chlorination in the pandemic times: The current state of the art for monitoring chlorine residual in water and chlorine exposure in air. Sci. Total Environ. 2022, 838, 156193. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Fang, C.; Deng, Y.; Xu, Z. Intensified Disinfection Amid COVID-19 Pandemic Poses Potential Risks to Water Quality and Safety. Environ. Sci. Technol. 2021, 55, 4084–4086. [Google Scholar] [CrossRef] [PubMed]
- Sotirov, A. Increasing quantity of disinfectants at the environment. Acad. Lett. 2021, 2, 1290. [Google Scholar] [CrossRef]
- Yin, W.; Wang, C.; Zhang, H.; Lei, P. Impact of the use of disinfectants on water environment in Wuhan during COVID-19 pandemic. Yangtze River 2020, 51, 29–33. [Google Scholar]
- Li, Z.; Song, G.; Bi, Y.; Gao, W.; He, A.; Lu, Y.; Wang, Y.; Jiang, G. Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. Environ. Sci. Technol. 2021, 55, 4103–4114. [Google Scholar] [CrossRef] [PubMed]
- Poćwiardowski, W. The potential of swimming pool rinsing water for irrigation of green areas: A case study. Environ. Sci. Pollut. Res. 2023, 30, 57174–57177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ling, H.; Huang, X.; Li, J.; Li, W.; Yi, C.; Zhang, T.; Jiang, Y.; He, Y.; Deng, S.; et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020, 74, 40445. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.A.; Joshi, L.T. 2021 Biocide Use in the Antimicrobial Era: A Review. Molecules 2021, 26, 2276. [Google Scholar] [CrossRef]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. 2022, 29, 85742–85760. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: Halophenolic DBPs are generally more toxic than haloaliphatic ones. Water Res. 2014, 65, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Lu, T.; Zhang, J.; Sun, L.; Hu, B.; Hu, J.; Peñuelas, J.; Zhu, L.; Qian, H. Residual chlorine disrupts the microbialcommunities and spreads antibiotic resistance in freshwater. J. Hazard Mater. 2022, 423, 127152. [Google Scholar] [CrossRef] [PubMed]
- Valentukeviciene, M.; Andriulaityte, I.; Chadysas, V. Assessment of Residual Chlorine Interaction with Different Microelements in Stormwater Sediments. Molecules 2023, 28, 5358. [Google Scholar] [CrossRef] [PubMed]
- Bonin, L.; Vitry, V.; Olivier, M.G.; Bertolucci-Coelho, L. Covid-19: Effect of disinfection on corrosion of surfaces. Corros. Eng. Sci. Technol. 2020, 55, 693–695. [Google Scholar] [CrossRef]
- Costa, R.D.F.S.; Barbosa, M.L.S.; Silva, F.J.G.; Sousa, S.R.; Sousa, V.F.C.; Ferreira, B.O. Study of the Chlorine Influence on the Corrosion of Three Steels to Be Used in Water Treatment Municipal Facilities. Materials 2023, 16, 2514. [Google Scholar] [CrossRef]
- Bhat, S.A.; Sher, F.; Kumar, R.; Karahmet, E.; Haq, U.A.S.; Zafar, A.; Lima, E.C. Environmental and health impacts of spraying COVID-19 disinfectants with associated challenges. Environ. Sci. Pollut. Res. 2021, 29, 85648–85657. [Google Scholar] [CrossRef] [PubMed]
- Valentukeviciene, M.; Andriulaityte, I.; Zurauskiene, R. Experimental Research on the Treatment of Stormwater Contaminated by Disinfectants Using Recycled Materials—Hemp Fiber and Ceramzite. Int. J. Environ. Res. Public Health 2022, 19, 14486. [Google Scholar] [CrossRef] [PubMed]
- Nabi, G.; Wang, Y.; Hao, Y.; Khan, S.; Wu, Y.; Li, D. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef] [PubMed]
- Gevorgyan, S.A.; Hayrapetyan, S.S.; Hayrapetyan, M.S.; Khachatryan, H.G. Express evaluation of sorption mechanism on peat containing materials. Period. Tche Quim. 2020, 17, 469–477. [Google Scholar] [CrossRef]
- Arabia, T.; Basri, H.; Manfarizah; Zainabun; Mukhtaruddin. Physical and chemical characteristics in peat lands of Aceh Jaya District, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 499, 012004. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Laohaprapanon, S.; Marques, M.; Hogland, W. Removal of Organic Pollutants from Wastewater Using Wood Fly Ash as a Low-Cost Sorbent. Clean Soil Air Water 2010, 38, 1055–1061. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A.; Baryla, A. Wybór materiału reaktywnego do usuwania fosforu z wód i ścieków na przykładzie kruszywa popiołoporytowego Pollytag® (Choosing of reactive material for phosphorous removal from water and wastewater on the example of lightweight aggregate Pollytag®). Inżynieria Ekol. 2014, 39, 33–41. (In Polish) [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Baryła, A.; Bus, A. Effect of P-Reactive Drainage Aggregates on Green Roof Runoff Quality. Water 2014, 6, 2575–2589. [Google Scholar] [CrossRef]
- World Health Organization. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020; Available online: https://apps.who.int/iris/handle/10665/332096 (accessed on 26 November 2023).
- Malaviya, P.; Sharma, R.; Sharma, P.K. Rain Gardens as Stormwater Management Tool. In Sustainable Green Technologies for Environmental Management; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Khan, S.; Faiq, M.E.; Elahi, S.; Hashmi, S.I.; Akhtar, S.; Jamil, A.; Sharif, M.; Ullah, S.; Zakerullah; Mansoor, S.; et al. Phytoremediation of pollutants from wastewater using hydrophytes: A case study of Islamabad, Pakistan. J. Biodivers. Environ. Sci. 2021, 19, 36–49. Available online: https://www.innspub.net/wp-content/uploads/2022/05/JBES-V19-No5-p36-49.pdf (accessed on 27 November 2023).
- Obinna, I.B.; Ebere, E.C. A Review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Anal. Methods Environ. Chem. J. 2019, 2, 5–38. [Google Scholar] [CrossRef]
- Kulandaiswamy, N.D.M.; Nithyanandam, M. Feasibility Studies on Treatment of Household Greywater Using Phytoremediation Plants. Res. Sq. 2021, 1–15. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Phytoremediation efficacy assessment of polycyclic aromatic hydrocarbons contaminated soils using garden pea (Pisum sativum) and earthworms (Eisenia fetida). Chemosphere 2019, 229, 227–235. [Google Scholar] [CrossRef]
- Biswal, B.; Singh, S.K.; Patra, A.; Mohapatra, K.K. Evaluation of phytoremediation capability of French marigold (Tagetes patula) and African marigold (Tagetes erecta) under heavy metals contaminated soils. Int. J. Phytoremediation 2022, 24, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Fridrick, L.; Valentukevičienė, M. Hemp as a Sorbent for Disinfectant—Polluted Watertreatment. Conference: AQUA 2021, Plock, Poland. Available online: https://www.researchgate.net/publication/358125963_HEMP_AS_A_SORBENT_FOR_DISINFECTANT-POLLUTED_WATER_TREATMENT (accessed on 26 November 2023).
- Hu, L.; Mao, J.; Zhong, R.; Zhao, H. Assessment of heavy metals mobilization in road-deposited sediments induced by COVID-19 disinfection. Water Res. 2023, 243, 120393. [Google Scholar] [CrossRef]
- Cheng, Z.; Guan, H.; Meng, J.; Wang, X. Dual-Functional Porous Wood Filter for Simultaneous Oil/Water Separation and Organic Pollutant Removal. ASC Omega 2020, 5, 14096–14103. [Google Scholar] [CrossRef]
- Šimėnaitė, R. Fitoremediacija: Augalų Įvairovė ir Ekspozicijos Įrengimas. Available online: https://www.botanikos-sodas.vu.lt/files/fitor1.pdf (accessed on 27 November 2023).
- Ansari, A.A.; Naeem, M.; Gill, S.S.; Alzuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
LWA Mass, g * | I ppm | II ppm | III ppm | IV ppm | |
---|---|---|---|---|---|
Control stormwater sample | 3.52 ± 0.35 | 4.02 ± 0.40 | 3.97 ± 0.40 | 4.11 ± 0.41 | |
LWA Polski J1 | 159.93 | 2.00 ± 0.20 | 3.36 ± 0.34 | 3.84 ± 0.38 | 3.80 ± 0.38 |
LWA Polski J2 | 178.36 | 2.03 ± 0.20 | 2.18 ± 0.22 | 3.38 ± 0.38 | 3.83 ± 0.38 |
LWA Polski J3 | 151.34 | 2.03 ± 0.20 | 3.52 ± 0.35 | 3.54 ± 0.35 | 3.89 ± 0.39 |
LWA Leca J4 | 65.16 | 1.54 ± 0.15 | 1.08 ± 0.12 | 1.25 ± 0.12 | 0.89 ± 0.10 |
LWA Leca J5 | 71.70 | 0.87 ± 0.09 | 0.72 ± 0.07 | 0.81 ± 0.08 | 1.97 ± 0.19 |
LWA Leca J6 | 72.43 | 1.17 ± 0.12 | 1.03 ± 0.10 | 1.63 ± 0.16 | 1.07 ± 0.11 |
LWA Mass, g | I ppm | II ppm | III ppm | IV ppm | |
---|---|---|---|---|---|
Control stormwater sample | 2.26 ± 0.23 | 4.06 ± 0.41 | 3.56 ± 0.36 | 2.08 ± 0.21 | |
LWA Pollytag J7 | 172.51 | 1.88 ± 0.19 | 3.78 ± 0.38 | 3.48 ± 0.35 | 2.04 ± 0.20 |
LWA Pollytag J8 | 185.02 | 1.58 ± 0.16 | 3.72 ± 0.37 | 3.46 ± 0.35 | 1.84 ± 0.18 |
LWA Pollytag J9 | 159.75 | 2.23 ± 0.22 | 4.02 ± 0.40 | 3.40 ± 0.34 | 1.80 ± 0.18 |
LWA Ceski J10 | 181.97 | 1.92 ± 0.19 | 3.86 ± 0.39 | 3.32 ± 0.33 | 1.82 ± 0.18 |
LWA Ceski J11 | 187.53 | 1.98 ± 0.19 | 3.24 ± 0.32 | 2.76 ± 0.27 | 2.00 ± 0.20 |
LWA Ceski J12 | 190.74 | 1.64 ± 0.64 | 3.66 ± 0.37 | 3.18 ± 0.32 | 1.88 ± 0.19 |
Value | pH | Conductivity, µs/cm | Turbidity, NTU |
---|---|---|---|
Initial Stormwater/ after Filtration | Initial Stormwater/ after Filtration | Initial Stormwater/ after Filtration | |
Minimum | 6.66/7.05 | 86.5/118.5 | 0.10/0.15 |
Medium | 6.92/7.46 | 92.6/189.4 | 0.15/0.21 |
Maximum | 7.74/8.07 | 100.6/429.0 | 0.19/0.38 |
Initial Stormwater | I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|---|
pH | 7.9 | 5.5 | 6.6 | 5.8 | 6.5 | 5.9 | 6.8 |
Conductivity, µS/cm | 2.9 | 649 | 601 | 569 | 741 | 524 | 492 |
Turbidity, NTU | 0.173 | 0.041 | 0.003 | 1.543 | 0.180 | 0.005 | 0.007 |
Color, AV | 1.193 | 0.169 | 0.008 | 0.072 | 0.012 | 0.005 | 0.031 |
Residual chlorine, ppm | <0.01 | 0.02 | 0.60 | 0.46 | 0.08 | 0.01 | <0.01 |
Initial Stormwater | I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|---|
pH | 7.5 | 8.9 | 9.8 | 9.9 | 10.1 | 10.1 | 10.8 |
Conductivity, µS/cm | 20.9 | 481 | 553 | 604 | 581 | 615 | 522 |
Turbidity, NTU | 1.248 | 1.396 | 1.345 | 1.312 | 1.244 | 1.217 | 1.266 |
Color, AV | 0.128 | 0.224 | 0.192 | 0.163 | 0.130 | 0.119 | 0.142 |
Residual chlorine, ppm | <0.01 | 0.35 | 0.29 | 0.22 | 0.23 | 0.39 | 0.15 |
Initial Stormwater | I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|---|
pH | 8.3 | 9.8 | 8.3 | 8.1 | 7.6 | 8.3 | 8.6 |
Conductivity, µS/cm | 40.6 | 643 | 600 | 764 | 671 | 643 | 639 |
Turbidity, NTU | 1.151 | 1.249 | 1.370 | 1.205 | 1.265 | 1.160 | 1.131 |
Color, AV | 0.084 | 0.104 | 0.118 | 0.089 | 0.131 | 0.080 | 0.067 |
Residual chlorine, ppm | <0.01 | 0.48 | 0.28 | 0.17 | 0.09 | 0.09 | 0.08 |
Sample | Cl ppm | K ppm | Ca ppm | Cr ppm | Fe ppm | Cu ppm | Zn ppm |
---|---|---|---|---|---|---|---|
Test sample TP1 * | <LOD | 2670.73 | 56,467.4 | <LOD | 932.56 | 13.77 | 82.27 |
Test sample TP2 * | <LOD | 12,050.57 | 51,332 | <LOD | 682.25 | <LOD | 19.33 |
Test sample TP3 * | <LOD | 12,104.38 | 52,326.03 | <LOD | 1505.58 | 16.23 | 7.75 |
Test sample PS1 ** | <LOD | 2821.07 | 62,694.84 | <LOD | 985.75 | 34.03 | 9.08 |
Test sample PS2 ** | <LOD | 65,893.4 | 27,297.06 | 37.64 | 156.91 | 18.89 | 71.79 |
Test sample PSAW *** | <LOD | 75,360.3 | 15,043.22 | <LOD | <LOD | <LOD | 25.00 |
Sample TPAW **** | <LOD | 3072.12 | 48,768.43 | 75.59 | 885.89 | <LOD | 36.3 |
Sample PSAW *** | <LOD | 3465.48 | 48,259.56 | 71.6 | 986.89 | 21.58 | 36.14 |
Test sample TPAW **** after watering | <LOD | 22,829.43 | 62,847.73 | <LOD | <LOD | <LOD | 32.52 |
Test sample LWA TP (693 g) | <LOD | 35,446.31 | 36,728.77 | 67.73 | 54,119.77 | 49.07 | 2291.68 |
Test sample LWA PS (459 g) | <LOD | 36,193.05 | 38,863.56 | 68.5 | 58,878.71 | 59.47 | 2569.19 |
Test sample 1TPS ***** (121 g) | <LOD | 3570.53 | 62,603.3 | <LOD | 1502.04 | 16.5 | 12.00 |
Test sample 1PSS ***** (100 g) | <LOD | 4314.92 | 58,666.03 | <LOD | 1264.57 | 20.77 | 11.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentukeviciene, M.; Andriulaityte, I.; Karczmarczyk, A.; Zurauskiene, R. Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation. Environments 2024, 11, 101. https://doi.org/10.3390/environments11050101
Valentukeviciene M, Andriulaityte I, Karczmarczyk A, Zurauskiene R. Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation. Environments. 2024; 11(5):101. https://doi.org/10.3390/environments11050101
Chicago/Turabian StyleValentukeviciene, Marina, Ieva Andriulaityte, Agnieszka Karczmarczyk, and Ramune Zurauskiene. 2024. "Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation" Environments 11, no. 5: 101. https://doi.org/10.3390/environments11050101
APA StyleValentukeviciene, M., Andriulaityte, I., Karczmarczyk, A., & Zurauskiene, R. (2024). Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation. Environments, 11(5), 101. https://doi.org/10.3390/environments11050101