Exploration of Ferrate(VI) Potential in Treating Lake Constance Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pilot Plant Setup
2.3. Additional Jar Tests
2.4. Analysis
2.5. Toxicity Assessment
3. Results and Discussion
3.1. Quality of Lake Constance Water
3.2. Comparative Treatment Performance
3.3. Additional Jar Test Results
3.4. Toxicity Assessment Results
3.5. Overall Remarks on Future Work Consideration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mührle, U.; Ortlepp, J.; Rey, P. Der Bodensee Zustand–Fakten–Perspektiven; IGKB: Bregenz, Austria, 2004. [Google Scholar]
- Petri, M. Water Quality of Lake Constance. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2006; Volume 5, Part L; pp. 127–138. [Google Scholar]
- Patil, A.L.; Patil, P.N.; Gogate, P.R. Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies. Ultrason. Sonochem. 2014, 21, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 2018, 619, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/105/EC; European Union Directive on Environmental Quality Standards. European Union: Brussels, Belgium, 2008.
- COM (2011) 876; EC-Proposal for a Directive Amending the WFD and EQSD. European Union: Brussels, Belgium, 2011.
- Jiang, J.-Q. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J. Chem. Technol. Biotech. 2014, 89, 165–177. [Google Scholar] [CrossRef]
- Tiwari, D.; Kim, H.U.; Lee, S.M.; Yang, J.K.; Kim, H.O. Ferrate (VI) for wastewater treatment: Oxidation of cyanide in aqueous medium. Environ. Eng. Res. 2006, 11, 318–324. [Google Scholar] [CrossRef]
- Sharma, V.K.; Mishra, S.K.; Nesnas, N. Oxidation of sulfonamide antimicrobials by ferrate (VI). Environ. Sci. Technol. 2006, 40, 7222–7227. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Dong, W.; Wang, H.; Ma, H.; Gu, Y.; Tian, Y. Degradation of tetrabromobisphenol A by a ferrate (vi)–ozone combination process: Advantages, optimization, and mechanistic analysis. RSC Adv. 2019, 9, 41783–41793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.-Q.; Stanford, C.; Alsheyab, M. The online generation and application of ferrate (VI) for sewage treatment—A pilot scale trial. Sep. Purif. Technol. 2009, 68, 227–231. [Google Scholar] [CrossRef]
- Jiang, J.-Q.; Stanford, C.; Petri, M. Practical application of ferrate(VI) for water and wastewater treatment—Site study’s approach. Water Energy Nexus 2018, 1, 42–46. [Google Scholar] [CrossRef]
- DIN 38407-47; Bestimmung Ausgewählter Arzneimittelwirkstoffe und Weitere Organischer Stoffe—Verfahren Mittels HPLC-MS/MS Oder—HRMS Nach Direktinjektion. Beuth Verlag: Berlin, Germany, 2017.
- DIN ISO 16308:2017-09; Wasserbeschaffenheit—Bestimmung von Glyphosat und AMPA—Verfahren Mittels Hochleistungs-Flüssigkeitschromatographie (HPLC) Mit Tandem-Massenspektrometrischer Detektion. Beuth Verlag: Berlin, Germany, 2018.
- Munch, J.W.; Grimmett, P. Method 522—Determination of 1,4-Dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM); United States Environmental Protection Agency: Washington, DC, WA, USA, 2008. [Google Scholar]
- International Organization for Standardization (ISO). Water Quality: Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test). Method Suring Liquid-Dried Bacteria; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Mayo-Bean, K.; Moran-Bruce, K.; Meylan, W.; Ranslow, P.; Lock, M.; Nabholz, V.; Von Runnen, J.; Cassidy, L.; Tunkel, J. Methodology Document for the Ecological Structure–Activity Relationship Model (ECOSAR) Class Program, Version 2; Office of Pollution Prevention and Toxics, US Environmental Protection Agency: Washington, DC, USA, 2017. [Google Scholar]
- Jiang, J.-Q.; Zhou, Z. Removal of pharmaceutical residues by ferrate (VI). PLoS ONE 2013, 8, e55729. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Von Gunten, U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(VI) and ozone) and non-selective oxidants (hydroxyl radical). Water Res. 2010, 44, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.; Jaeger, M. On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products–A kinetic study. Sustain. Chem. Pharm. 2017, 5, 131–140. [Google Scholar] [CrossRef]
- Li, W.; Xu, X.; Lyu, B.; Tang, Y.; Zhang, Y.; Chen, F.; Korshin, G. Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: Kinetics, products, and toxicity assessment. Environ. Sci. Poll. Res. 2019, 26, 14570–14582. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shu, J.; Sharma, V.K.; Liu, C.; Xu, X.; Nesnas, N.; Wang, H. Unveiling the mechanism of imidacloprid removal by ferrate (VI): Kinetics, role of oxidation and adsorption, reaction pathway and toxicity assessment. Sci. Total Environ. 2022, 805, 150383. [Google Scholar] [CrossRef]
Raw Water | Drinking Water | |
---|---|---|
Concentration Ranges in ng L−1 | ||
Pharmaceuticals | ||
Gabapentin | 34–48 | <10 |
Metformin | 130–170 | 21–64 |
10, 11-Dihydroxycarbamazepin | <10–18 | <10 |
4-AAA | 21–32 | <10 |
4-FAA | 14–26 | <10 |
Pesticides | ||
AMPA | 17–25 | <10 |
Industry Chemicals | ||
1, 4-Dioxan | 16–22 | <10–11 |
Benzotriazole | 83–130 | <10–20 |
4-Methyl-benzotriazole | 16–50 | <10–12 |
5-Methyl-benzotriazole | 14–31 | <10 |
Artificial Sweeteners | ||
Acesulfam | 160–270 | <10–40 |
Cyclamat | 10–17 | <10 |
Sucralose | 43–70 | <10 |
Parameter | (mg L−1) |
---|---|
Ammonium | <0.01 |
Chloride | 7 |
Fluoride | 0.1 |
Nitrate | 3.8 |
Sulphate | 33 |
Calcium | 49 |
Magnesium | 8.5 |
Sodium | 5.6 |
Hardness (as CaCO3) | 161 |
DOC | 1.2 |
pH | 8.2 |
Raw Water | Ozonated Water | ||||
---|---|---|---|---|---|
Unit | Ferrate(VI) | FeCl3 | Ferrate(VI) | FeCl3 | |
Fe dosage | mg L−1 | 0.1 | 0.1 | 0.1 | 0.1 |
Turbidity removal | % | ~80 | ~80 | ~90 | ~90 |
Residual Fe | µg L−1 | ~16 | ~9 | ~15 | ~12 |
Particle removal | % | ~93 | ~94 | ~98 | ~98 |
Bromate formation | µg L−1 | 0 | 0 | ~2.5 | ~2.5 |
Benzotriazole removal | % | 10 | 0 | 10 | 0 |
Acesulfam removal | % | 10 | 0 | 10 | 0 |
Metformin removal | % | 10 | 0 | 10 | 0 |
Chemicals. | ECOSAR Class Definition | Chronic Toxicity (mg L−1) | |||||
---|---|---|---|---|---|---|---|
Fish (96 h, LC50) | Dalphnid (48 h, LC50) | Green Algae (96 h, EC50) | Fish (Chv) | Daphnid (Chv) | Green Algae (Chv) | ||
IMP | Neonicotinoids | 471 | 121 | 73.4 | 214 | 6.75 | 3.86 |
Final oxidation product | Halopyridines | 21.6 | 21.3 | 11.4 | 4.63 | 0.204 | 3.94 |
BS | Phenols, poly | 21.8 | 196 | 6.90 | 12.6 | 75.0 | 0.877 |
Final oxidation product | Neutral organics | 41,900 | 18,600 | 49,800 | 30,600 | 911 | 753 |
AZM | Easter | 18.8 | 34.3 | 12.0 | 1.09 | 16.4 | 4.59 |
Final oxidation product | Easter | 1.03 | 1.61 | 0.450 | 0.044 | 0.514 | 0.273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.-Q.; Zhang, S.; Petri, M.; Mosbach, C. Exploration of Ferrate(VI) Potential in Treating Lake Constance Water. Environments 2023, 10, 25. https://doi.org/10.3390/environments10020025
Jiang J-Q, Zhang S, Petri M, Mosbach C. Exploration of Ferrate(VI) Potential in Treating Lake Constance Water. Environments. 2023; 10(2):25. https://doi.org/10.3390/environments10020025
Chicago/Turabian StyleJiang, Jia-Qian, Shaoqing Zhang, Michael Petri, and Christian Mosbach. 2023. "Exploration of Ferrate(VI) Potential in Treating Lake Constance Water" Environments 10, no. 2: 25. https://doi.org/10.3390/environments10020025
APA StyleJiang, J. -Q., Zhang, S., Petri, M., & Mosbach, C. (2023). Exploration of Ferrate(VI) Potential in Treating Lake Constance Water. Environments, 10(2), 25. https://doi.org/10.3390/environments10020025