Predictors of Transition from Mild Cognitive Impairment to Normal Cognition and Dementia
Abstract
1. Introduction
2. Methods
2.1. Participant Characteristics
2.2. Demographic Variables
2.3. Lifestyle and Clinical Characteristics
2.4. Behavioral Data
2.5. Neuroimaging Data and Biomarkers
2.6. Statistical Analyses
3. Results
3.1. Demographic Characteristics
3.2. Ecog Cognitive Test
3.3. Neuroanatomical Characteristics
3.4. Biomarker Characteristics of Participants
3.5. Partial Correlation Analysis
3.6. Multinomial Logistic Regression Analysis of Predictive Factors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MCI | mild cognitive impairment |
| pMCI | progressive mild cognitive impairment |
| rMCI | reversible mild cognitive impairment |
| sMCI | stable mild cognitive impairment |
| APOE | apolipoprotein E |
| CDRSB | Clinical Dementia Rating Scale Sum of Boxes |
| ADAS | Alzheimer’s Disease Assessment Scale |
| MMSE | Mini-Mental State Examination |
| RAVLT_immediate | Rey Auditory Verbal Learning Test (Immediate Recall) |
| RAVLT_delay | Rey Auditory Verbal Learning Test Delayed Recall |
| LDELtotal | Logical Memory Delayed Recall Total |
| TMTB-A | Trail Making Test Part B Score- Trail Making Test Part A Score |
| FAQ | Functional Activities Questionnaire |
| CFT | Category Fluency (Animal Naming) Score. |
| EcogPt | Everyday Cognition Scale—Participant Version |
| EcogSP | Everyday Cognition Scale—Study Partner Version |
| EDU | Years of education |
| Entorhinal | entorhinal cortex |
| Fusiform | fusiform gyrus |
| MidTemp | middle temporal gyrus |
References
- Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270–279. [Google Scholar] [CrossRef]
- Altmann, A., Tian, L., Henderson, V. W., Greicius, M. D., & Alzheimer’s Disease Neuroimaging Initiative Investigators. (2014). Sex modifies the APOE -related risk of developing Alzheimer disease. Annals of Neurology, 75(4), 563–573. [Google Scholar] [CrossRef]
- Berg, L. (1988). Clinical dementia rating (CDR). Psychopharmacology Bulletin, 24(4), 637–639. [Google Scholar] [PubMed]
- Bun, S., Suzuki, K., Niimura, H., Shikimoto, R., Kida, H., Shibata, M., Honda, T., Ohara, T., Hata, J., Nakaji, S., Maeda, T., Ono, K., Nakashima, K., Iga, J., Takebayashi, M., Ninomiya, T., Mimura, M., & the JPSC-AD Study Group. (2023). Gender and age influence the association between gait speed and mild cognitive impairment in community-dwelling Japanese older adults: From the Japan prospective studies collaboration for ageing and dementia (JPSC-AD). Psychogeriatrics, 23(6), 918–929. [Google Scholar] [CrossRef] [PubMed]
- Butters, N., Granholm, E., Salmon, D. P., Grant, I., & Wolfe, J. (1987). Episodic and semantic memory: A comparison of amnesic and demented patients. Journal of Clinical and Experimental Neuropsychology, 9(5), 479–497. [Google Scholar] [CrossRef]
- Caselli, R. J., Dueck, A. C., Osborne, D., Sabbagh, M. N., Connor, D. J., Ahern, G. L., Baxter, L. C., Rapcsak, S. Z., Shi, J., Woodruff, B. K., Locke, D. E. C., Snyder, C. H., Alexander, G. E., Rademakers, R., & Reiman, E. M. (2009). Longitudinal modeling of age-related memory decline and the APOE ε4 effect. New England Journal of Medicine, 361(3), 255–263. [Google Scholar] [CrossRef]
- Dang, M., Yang, C., Chen, K., Lu, P., Li, H., Zhang, Z., & for the Beijing Aging Brain Rejuvenation Initiative, for the Alzheimer’s Disease Neuroimaging Initiative. (2023). Hippocampus-centred grey matter covariance networks predict the development and reversion of mild cognitive impairment. Alzheimer’s Research & Therapy, 15(1), 27. [Google Scholar] [CrossRef]
- Durazzo, T. C., Meyerhoff, D. J., & Yoder, K. K. (2018). Cigarette smoking is associated with cortical thinning in anterior frontal regions, insula and regions showing atrophy in early Alzheimer’s Disease. Drug and Alcohol Dependence, 192, 277–284. [Google Scholar] [CrossRef]
- Farias, S. T., Mungas, D., Reed, B. R., Cahn-Weiner, D., Jagust, W., Baynes, K., & Decarli, C. (2008). The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology, 22(4), 531–544. [Google Scholar] [CrossRef]
- Folstein, M. F., Folstein, S. E., & Mchugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. [Google Scholar] [CrossRef]
- Fox, N. C., Belder, C., Ballard, C., Kales, H. C., Mummery, C., Caramelli, P., Ciccarelli, O., Frederiksen, K. S., Gomez-Isla, T., Ismail, Z., Paquet, C., Petersen, R. C., Perneczky, R., Robinson, L., Sayin, O., & Frisoni, G. B. (2025). Treatment for Alzheimer’s disease. The Lancet, 406(10510), 1408–1423. [Google Scholar] [CrossRef]
- Grassi, M., Rouleaux, N., Caldirola, D., Loewenstein, D., Schruers, K., Perna, G., Dumontier, M., & Alzheimer’s Disease Neuroimaging Initiative. (2019). A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s disease using socio-demographic characteristics, clinical information, and neuropsychological measures. Frontiers in Neurology, 10, 756. [Google Scholar] [CrossRef]
- Hu, C., Yu, D., Sun, X., Zhang, M., Wang, L., & Qin, H. (2017). The prevalence and progression of mild cognitive impairment among clinic and community populations: A systematic review and meta-analysis. International Psychogeriatrics, 29(10), 1595–1608. [Google Scholar] [CrossRef]
- Iraniparast, M., Shi, Y., Wu, Y., Zeng, L., Maxwell, C. J., Kryscio, R. J., St John, P. D., SantaCruz, K. S., & Tyas, S. L. (2022). Cognitive reserve and mild cognitive impairment: Predictors and rates of reversion to intact cognition vs. progression to dementia. Neurology, 98(11), e1114–e1123. [Google Scholar] [CrossRef]
- Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A. L., Nystrom, N. C., Piper, M. E., Cook, J., Norton, D. L., Zuelsdorff, M., Wyman, M. F., Flowers Benton, S., Lambrou, N. H., O’Hara, J., Chin, N. A., Asthana, S., Carlsson, C., & Gleason, C. E. (2021). Cigarette smoking status, cigarette exposure, and duration of abstinence predicting incident dementia and death: A multistate model approach. Journal of Alzheimer’s Disease, 80(3), 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Katayama, O., Lee, S., Bae, S., Makino, K., Shinkai, Y., Chiba, I., Harada, K., & Shimada, H. (2021). Lifestyle changes and outcomes of older adults with mild cognitive impairment: A 4-year longitudinal study. Archives of Gerontology and Geriatrics, 94, 104376. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, T. D., & Monsell, S. E. (2012). Reversion from mild cognitive impairment to normal or near-normal cognition: Risk factors and prognosis. Neurology, 79(15), 1591–1598. [Google Scholar] [CrossRef]
- Li, J.-Q., Tan, L., Wang, H.-F., Tan, M.-S., Tan, L., Xu, W., Zhao, Q.-F., Wang, J., Jiang, T., & Yu, J.-T. (2016). Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. Journal of Neurology, Neurosurgery & Psychiatry, 87(5), 476–484. [Google Scholar] [CrossRef]
- Lissek, V., & Suchan, B. (2021). Preventing dementia? Interventional approaches in mild cognitive impairment. Neuroscience & Biobehavioral Reviews, 122, 143–164. [Google Scholar] [CrossRef]
- Lopez, O. L., Becker, J. T., Chang, Y.-F., Sweet, R. A., DeKosky, S. T., Gach, M. H., Carmichael, O. T., McDade, E., & Kuller, L. H. (2012). Incidence of mild cognitive impairment in the Pittsburgh cardiovascular health study–cognition study. Neurology, 79(15), 1599–1606. [Google Scholar] [CrossRef]
- Luo, Y., Qiao, M., Liang, Y., Chen, C., Zeng, L., Wang, L., & Wu, W. (2022). Functional brain connectivity in mild cognitive impairment with sleep disorders: A study based on resting-state functional magnetic resonance imaging. Frontiers in Aging Neuroscience, 14, 812664. [Google Scholar] [CrossRef]
- Malek-Ahmadi, M. (2016). Reversion from mild cognitive impairment to normal cognition: A meta-analysis. Alzheimer Disease & Associated Disorders, 30(4), 324–330. [Google Scholar] [CrossRef]
- Manjavong, M., Diaz, A., Ashford, M. T., Aaronson, A., Miller, M. J., Kang, J. M., Mackin, S., Tank, R., Landavazo, B., Truran, D., Farias, S. T., Weiner, M., & Nosheny, R. L. (2024). Performance of a short version of the everyday cognition scale (ecog-12) to detect cognitive impairment. The Journal of Prevention of Alzheimer’s Disease, 11(6), 1741–1750. [Google Scholar] [CrossRef]
- Marquié, M., García-Gutiérrez, F., Orellana, A., Montrreal, L., De Rojas, I., García-González, P., Puerta, R., Olivé, C., Cano, A., Hernández, I., Rosende-Roca, M., Vargas, L., Tartari, J. P., Esteban-De Antonio, E., Bojaryn, U., Ricciardi, M., Ariton, D. M., Pytel, V., Alegret, M., … Valero, S. (2023). The synergic effect of AT(N) profiles and depression on the risk of conversion to dementia in patients with mild cognitive impairment. International Journal of Molecular Sciences, 24(2), 1371. [Google Scholar] [CrossRef] [PubMed]
- Marra, C., Piccininni, C., Masone Iacobucci, G., Caprara, A., Gainotti, G., Costantini, E. M., Callea, A., Venneri, A., & Quaranta, D. (2021). Semantic memory as an early cognitive marker of Alzheimer’s disease: Role of category and phonological verbal fluency tasks. Journal of Alzheimer’s Disease, 81(2), 619–627. [Google Scholar] [CrossRef] [PubMed]
- Mayer, G., Frohnhofen, H., Jokisch, M., Hermann, D. M., & Gronewold, J. (2024). Associations of sleep disorders with all-cause MCI/dementia and different types of dementia—Clinical evidence, potential pathomechanisms and treatment options: A narrative review. Frontiers in Neuroscience, 18, 1372326. [Google Scholar] [CrossRef]
- Mazzeo, S., Padiglioni, S., Bagnoli, S., Bracco, L., Nacmias, B., Sorbi, S., & Bessi, V. (2019). The dual role of cognitive reserve in subjective cognitive decline and mild cognitive impairment: A 7-year follow-up study. Journal of Neurology, 266(2), 487–497. [Google Scholar] [CrossRef]
- Mian, M., Tahiri, J., Eldin, R., Altabaa, M., Sehar, U., & Reddy, P. H. (2024). Overlooked cases of mild cognitive impairment: Implications to early Alzheimer’s disease. Ageing Research Reviews, 98, 102335. [Google Scholar] [CrossRef]
- Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia—Meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265. [Google Scholar] [CrossRef]
- Moody, J. N., Valerio, K. E., Hasselbach, A. N., Prieto, S., Logue, M. W., Hayes, S. M., Hayes, J. P., & Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2021). Body mass index and polygenic risk for Alzheimer’s disease predict conversion to Alzheimer’s disease. The Journals of Gerontology: Series A, 76(8), 1415–1422. [Google Scholar] [CrossRef]
- Nakahata, N., Nakamura, T., Kawarabayashi, T., Seino, Y., Ichii, S., Ikeda, Y., Amari, M., Takatama, M., Murashita, K., Ihara, K., Itoh, K., Nakaji, S., & Shoji, M. (2021). Age-related cognitive decline and prevalence of mild cognitive impairment in the Iwaki health promotion project. Journal of Alzheimer’s Disease, 84(3), 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Nordlund, A., Rolstad, S., Klang, O., Edman, A., Hansen, S., & Wallin, A. (2010). Two-year outcome of MCI subtypes and aetiologies in the Goteborg MCI study. Journal of Neurology, Neurosurgery & Psychiatry, 81(5), 541–546. [Google Scholar] [CrossRef]
- Ornish, D., Madison, C., Kivipelto, M., Kemp, C., McCulloch, C. E., Galasko, D., Artz, J., Rentz, D., Lin, J., Norman, K., Ornish, A., Tranter, S., DeLamarter, N., Wingers, N., Richling, C., Kaddurah-Daouk, R., Knight, R., McDonald, D., Patel, L., … Arnold, S. E. (2024). Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: A randomized, controlled clinical trial. Alzheimer’s Research & Therapy, 16(1), 122. [Google Scholar] [CrossRef]
- Pandya, S. Y., Lacritz, L. H., Weiner, M. F., Deschner, M., & Woon, F. L. (2017). Predictors of reversion from mild cognitive impairment to normal cognition. Dementia and Geriatric Cognitive Disorders, 43(3–4), 204–214. [Google Scholar] [CrossRef]
- Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. [Google Scholar] [CrossRef]
- Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985. [Google Scholar] [CrossRef]
- Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Chance, J. M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37(3), 323–329. [Google Scholar] [CrossRef] [PubMed]
- Pink, A., Stokin, G. B., Bartley, M. M., Roberts, R. O., Sochor, O., Machulda, M. M., Krell-Roesch, J., Knopman, D. S., Acosta, J. I., Christianson, T. J., Pankratz, V. S., Mielke, M. M., Petersen, R. C., & Geda, Y. E. (2015). Neuropsychiatric symptoms, APOE ε4, and the risk of incident dementia: A population-based study. Neurology, 84(9), 935–943. [Google Scholar] [CrossRef]
- Pyun, J.-M., Park, Y. H., Lee, K.-J., Kim, S., Saykin, A. J., Nho, K., & for the Alzheimer’s Disease Neuroimaging Initiative. (2021). Predictability of polygenic risk score for progression to dementia and its interaction with APOE ε4 in mild cognitive impairment. Translational Neurodegeneration, 10(1), 32. [Google Scholar] [CrossRef]
- Qin, Y., Han, H., Li, Y., Cui, J., Jia, H., Ge, X., Ma, Y., Bai, W., Zhang, R., Chen, D., Yi, F., & Yu, H. (2023). Estimating bidirectional transitions and identifying predictors of mild cognitive impairment. Neurology, 100(3), e297–e307. [Google Scholar] [CrossRef]
- Rangel, R. C., Belfort, T. T., Brandt, M. M., Lima Nogueira, M., & Dourado, M. C. N. (2025). Emotional recognition: A comparative study of people with mild cognitive impairment and Alzheimer’s disease self-report with caregiver perspectives. Journal of Geriatric Psychiatry and Neurology, 38(6), 457–466. [Google Scholar] [CrossRef]
- Rebolo, M., Maroco, J., De Mendonça, A., & Melo, G. (2025). Caregiver burden in mild cognitive impairment due to Alzheimer’s disease—A longitudinal study. Psychogeriatrics, 25(3), e70033. [Google Scholar] [CrossRef]
- Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271–276. [Google Scholar] [CrossRef]
- Rey, A. (1958). L’examen clinique en psychologie. Presses Universitaries De France. [Google Scholar]
- Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. The American Journal of Psychiatry, 141(11), 1356–1364. [Google Scholar]
- Scarabino, D., Broggio, E., Gambina, G., Maida, C., Gaudio, M. R., & Corbo, R. M. (2016). Apolipoprotein E genotypes and plasma levels in mild cognitive impairment conversion to Alzheimer’s disease: A follow-up study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(8), 1131–1138. [Google Scholar] [CrossRef]
- Serrano-Pozo, A., Das, S., & Hyman, B. T. (2021). APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. The Lancet Neurology, 20(1), 68–80. [Google Scholar] [CrossRef]
- Sha, F., Zhao, Z., Wei, C., & Li, B. (2022). Modifiable factors associated with reversion from mild cognitive impairment to cognitively normal status: A prospective cohort study. Journal of Alzheimer’s Disease, 86(4), 1897–1906. [Google Scholar] [CrossRef]
- Sheikh, J. (1986). Geriatric Depression Scale (GDS). Recent evidence and development of a shorter version. Clinical Gerontology A Guide to Assessment & Intervention, 5, 165–173. [Google Scholar] [CrossRef]
- Skirbekk, V., Bowen, C. E., Håberg, A., Jugessur, A., Engdahl, B., Bratsberg, B., Zotcheva, E., Selbæk, G., Kohler, H.-P., Weiss, J., Harris, J. R., Tom, S. E., Krokstad, S., Stern, Y., & Strand, B. H. (2023). Marital histories and associations with later-life dementia and mild cognitive impairment risk in the HUNT4 70+ study in Norway. Journal of Aging and Health, 35(7–8), 543–555. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, E. E., Katz, M. J., & Lipton, R. B. (2017). Sex differences in the relationship between depressive symptoms and risk of amnestic mild cognitive impairment. The American Journal of Geriatric Psychiatry, 25(1), 13–22. [Google Scholar] [CrossRef]
- Thomas, K. R., Bangen, K. J., Rotblatt, L. J., Weigand, A. J., Edwards, L., Tosun, D., Galasko, D., & for the Alzheimer’s Disease Neuroimaging Initiative. (2024). Self- and study partner–reported cognitive decline in older adults without dementia: The role of α-synuclein and amyloid biomarkers in the Alzheimer’s disease neuroimaging initiative. Alzheimer’s & Dementia, 20(11), 7777–7787. [Google Scholar] [CrossRef]
- Tucker-Drob, E. M. (2019). Cognitive aging and dementia: A life-span perspective. Annual Review of Developmental Psychology, 1(1), 177–196. [Google Scholar] [CrossRef]
- Wang, M., Sajobi, T. T., Hogan, D. B., Ganesh, A., Seitz, D. P., Chekouo, T., Forkert, N. D., Borrie, M. J., Camicioli, R., Hsiung, G. R., Masellis, M., Moorhouse, P., Tartaglia, M. C., Ismail, Z., & Smith, E. E. (2023). Expert elicitation of risk factors for progression to dementia in individuals with mild cognitive impairment. Alzheimer’s & Dementia, 19(10), 4542–4548. [Google Scholar] [CrossRef]
- Wang, W., Peng, J., Hou, J., Yuan, Z., Xie, W., Mao, G., Pan, Y., Shao, Y., & Shu, Z. (2023). Predicting mild cognitive impairment progression to Alzheimer’s disease based on machine learning analysis of cortical morphological features. Aging Clinical and Experimental Research, 35(8), 1721–1730. [Google Scholar] [CrossRef]
- Ward, D. D., Wallace, L. M. K., & Rockwood, K. (2020). Cumulative health deficits, APOE genotype, and risk for later-life mild cognitive impairment and dementia. Journal of Neurology, Neurosurgery & Psychiatry, 92, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. (1987). Wechsler memory scale-revised. Psychological Corporation. [Google Scholar]
- Wood, H. (2016). Meta-analysis finds high reversion rate from MCI to normal cognition. Nature Reviews Neurology, 12(4), 189. [Google Scholar] [CrossRef]
- Xu, H., Yang, R., Dintica, C., Qi, X., Song, R., Bennett, D. A., & Xu, W. (2020). Association of lifespan cognitive reserve indicator with the risk of mild cognitive impairment and its progression to dementia. Alzheimer’s & Dementia, 16(6), 873–882. [Google Scholar] [CrossRef]
- Xu, W., Wang, H., Wan, Y., Tan, C., Li, J., Tan, L., & Yu, J.-T. (2017). Alcohol consumption and dementia risk: A dose–response meta-analysis of prospective studies. European Journal of Epidemiology, 32(1), 31–42. [Google Scholar] [CrossRef]
- Xue, H., Hou, P., Li, Y., Mao, X., Wu, L., & Liu, Y. (2019). Factors for predicting reversion from mild cognitive impairment to normal cognition: A meta-analysis. International Journal of Geriatric Psychiatry, 34(10), 1361–1368. [Google Scholar] [CrossRef]
- Yang, Y., Chen, Y., Sang, F., Zhao, S., Wang, J., Li, X., Chen, C., Chen, K., & Zhang, Z. (2022). Successful or pathological cognitive aging? Converging into a “frontal preservation, temporal impairment (FPTI)” hypothesis. Science Bulletin, 67(22), 2285–2290. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-H., Tan, C.-C., Huang, S.-J., Zhang, X.-H., Tan, L., & Xu, W. (2024). Predicting the reversion from mild cognitive impairment to normal cognition based on magnetic resonance imaging, clinical, and neuropsychological examinations. Journal of Affective Disorders, 353, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-H., Tan, L., Jiao, M.-J., Lv, Y.-J., Zhang, X.-H., Tan, C.-C., Xu, W., & for the Alzheimer’s Disease Neuroimaging Initiative. (2025). Dissecting the clinical and pathological prognosis of MCI patients who reverted to normal cognition: A longitudinal study. BMC Medicine, 23(1), 260. [Google Scholar] [CrossRef]
- Zhang, J., Liu, Y., Lan, K., Huang, X., He, Y., Yang, F., Li, J., Hu, Q., Xu, J., & Yu, H. (2021). Gray matter atrophy in amnestic mild cognitive impairment: A voxel-based meta-analysis. Frontiers in Aging Neuroscience, 13, 627919. [Google Scholar] [CrossRef]
- Zhi, N., Ren, R., Qi, J., Liu, X., Yun, Z., Lin, S., Hu, Y., Li, H., Xie, X., Wang, J., Li, J., Zhu, Y., Gao, M., Yang, J., Wang, Y., Jing, Y., Geng, J., Cao, W., Xu, Q., … Wang, G. (2025). The China Alzheimer report 2025. General Psychiatry, 38(4), e102020. [Google Scholar] [CrossRef]



| rMCI | sMCI | pMCI | F/χ2 | p-Value | |||
|---|---|---|---|---|---|---|---|
| Demographic Characteristics | N | 52 | 432 | 272 | |||
| Age, years | Range | 55–89.3 | 55–90 | 55–88.3 | 11.667 | 0.003 | |
| Mean | 70.94 ± 8.22 | 72.37 ± 7.57 | 73.84 ± 7.03 | 5.012 | 0.007 de | ||
| Sex, male/female | 28/24 | 265/167 | 156/116 | 1.814 | 0.404 | ||
| N | 52 | 432 | 272 | ||||
| Education, years | Range | 12–20 | 7–20 | 6–20 | 9.038 | 0.011 | |
| Mean | 17.08 ± 2.27 | 16.06 ± 2.73 | 15.82 ± 2.77 | 4.663 | 0.01 ac | ||
| APOE ε4, 0/1/2 | 29/22/1 | 261/139/32 | 87/140/45 | 60.458 | <0.001 | ||
| General Cognition | CDRSB | N | 52 | 432 | 272 | 59.542 | <0.001 de |
| Mean | 1.10 ± 0.79 | 1.28 ± 0.76 | 1.98 ± 0.97 | ||||
| ADAS13 | N | 52 | 429 | 270 | 136.749 | <0.001 def | |
| Mean | 10.60 ± 3.93 | 14.13 ± 5.63 | 21.45 ± 5.95 | ||||
| MMSE | N | 52 | 432 | 272 | 39.681 | <0.001 abc | |
| Mean | 28.73 ± 1.37 | 27.97 ± 1.67 | 26.78 ± 1.82 | ||||
| Memory | RAVLT_immediate | N | 52 | 432 | 272 | 103.901 | <0.001 abc |
| Mean | 43.29 ± 9.37 | 37.29 ± 10.12 | 27.83 ± 7.13 | ||||
| RAVLT_delay | N | 52 | 432 | 272 | 77.579 | <0.001 abc | |
| Mean | 6.90 ± 3.73 | 4.90 ± 3.87 | 1.69 ± 2.32 | ||||
| LDELtotal | N | 52 | 432 | 272 | 96.446 | <0.001 ab | |
| Mean | 8.13 ± 2.53 | 6.91 ± 3.18 | 3.51 ± 3.05 | ||||
| Executive Function | TMTB-A | N | 52 | 432 | 272 | 38.964 | <0.001 de |
| Mean | 43.37 ± 21.75 | 61.00 ± 40.64 | 98.57 ± 71.58 | ||||
| Daily Function | FAQ | N | 52 | 426 | 270 | 94.7 | <0.001 def |
| Mean | 0.56 ± 0.98 | 1.92 ± 3.06 | 5.76 ± 4.93 | ||||
| Language Fluency | CFT | N | 52 | 432 | 272 | 34.907 | <0.001 abc |
| Mean | 20.56 ± 4.70 | 18.27 ± 5.00 | 15.21 ± 4.70 | ||||
| Lifestyle | Married or living with a partner, No/Yes/Unknown | 12/40/0 | 98/329/5 | 51/221/0 | 5.61 | 0.23 | |
| BMI | N | 52 | 432 | 272 | |||
| Mean | 27.91 ± 5.79 | 27.57 ± 4.59 | 26.32 ± 4.62 | 6.734 | 0.001 b | ||
| Obesity, No/Yes | 31/21 | 270/162 | 196/76 | 7.702 | 0.021 | ||
| Smoking, No/Yes | 23/18 | 236/137 | 148/109 | 2.44 | 0.295 | ||
| Drug, No/Yes | 40/1 | 370/3 | 257/0 | 4.164 | 0.125 | ||
| Alcohol, No/Yes | 40/1 | 364/9 | 244/13 | 3.346 | 0.188 | ||
| Clinical Characteristics | Psychiatric, No/Yes | 30/22 | 269/163 | 168/104 | 0.412 | 0.814 | |
| Neurologic, No/Yes | 34/18 | 272/160 | 199/73 | 7.878 | 0.019 | ||
| Cardiovascular, No/Yes | 17/35 | 136/296 | 84/188 | 0.075 | 0.963 | ||
| Hypertension, No/Yes | 28/24 | 230/202 | 133/139 | 1.362 | 0.506 | ||
| Stroke, No/Yes | 52/0 | 429/3 | 264/8 | 6.7 | 0.035 | ||
| Respiratory, No/Yes | 41/11 | 219/53 | 319/113 | 4.303 | 0.116 | ||
| Endocrine-Metabolic, No/Yes | 28/24 | 253/179 | 157/115 | 0.432 | 0.806 | ||
| Malignancy, No/Yes | 44/8 | 336/96 | 207/65 | 1.833 | 0.4 | ||
| Major Surgical Procedures, No/Yes | 15/26 | 84/289 | 71/186 | 5.019 | 0.081 | ||
| GDS | N | 52 | 432 | 271 | |||
| Mean | 1.19 ± 1.34 | 1.66 ± 1.44 | 1.69 ± 1.42 | 2.753 | 0.064 |
| EcogPt | EcogSP | Group | Ecog | Group × Ecog | |||||
|---|---|---|---|---|---|---|---|---|---|
| rMCI | sMCI | pMCI | rMCI | sMCI | pMCI | F(p) | F(p) | F(p) | |
| Memory | 2.08 ± 0.68 | 2.29 ± 0.69 | 2.48 ± 0.72 | 1.63 ± 0.51 | 2.03 ± 0.71 | 2.84 ± 0.81 | 36.314 | 0.267 | 21.295 |
| (<0.001) | (0.606) | (<0.001) | |||||||
| Language | 1.76 ± 0.64 | 1.88 ± 0.64 | 1.94 ± 0.70 | 1.26 ± 0.40 | 1.55 ± 0.59 | 2.11 ± 0.83 | 18.913 | 0.333 | 16.141 |
| (<0.001) | (0.564) | (<0.001) | |||||||
| Visual-Spatial | 1.36 ± 0.52 | 1.42 ± 0.55 | 1.58 ± 0.65 | 1.18 ± 0.23 | 1.32 ± 0.47 | 1.80 ± 0.77 | 20.817 | 1.101 | 7.264 |
| (<0.001) | (0.295) | (0.001) | |||||||
| Plan | 1.31 ± 0.48 | 1.48 ± 0.58 | 1.66 ± 0.65 | 1.21 ± 0.41 | 1.47 ± 0.62 | 1.93 ± 0.82 | 20.98 | 0.64 | 4.766 |
| (<0.001) | (0.424) | (0.009) | |||||||
| Organization | 1.51 ± 0.63 | 1.58 ± 0.65 | 1.72 ± 0.75 | 1.31 ± 0.55 | 1.51 ± 0.67 | 2.14 ± 0.89 | 20.791 | 1.932 | 11.66 |
| (<0.001) | (0.165) | (<0.001) | |||||||
| DividedAttention | 1.95 ± 0.77 | 1.98 ± 0.82 | 1.99 ± 0.78 | 1.57 ± 0.58 | 1.79 ± 0.78 | 2.38 ± 0.94 | 10.112 | 0.377 | 11.507 |
| (<0.001) | (0.54) | (<0.001) | |||||||
| Total | 1.69 ± 0.51 | 1.79 ± 0.54 | 1.92 ± 0.59 | 1.36 ± 0.36 | 1.62 ± 0.53 | 2.22 ± 0.70 | 31.297 | 0.497 | 17.96 |
| (<0.001) | (0.481) | (<0.001) | |||||||
| Variable | rMCI/sMCI | pMCI/sMCI | ||||
|---|---|---|---|---|---|---|
| β | OR (95%CL) | p | β | OR (95%CL) | p | |
| AGE | 0.011 | 1.011 | 0.707 | 0.0005 | 1.0005 | 0.98 |
| GENDER, Male | 0.308 | 1.361 | 0.459 | −1.125 | 0.325 | <0.001 |
| EDU | 0.185 | 1.204 | 0.024 | 0.042 | 1.043 | 0.363 |
| APOE ε4, 0 | 1.051 | 2.86 | 0.358 | −1.961 | 0.141 | <0.001 |
| APOE ε4, 1 | 1.498 | 4.472 | 0.195 | −0.805 | 0.447 | 0.061 |
| ADAS13 | −0.468 | 0.626 | 0.195 | 0.866 | 2.377 | <0.001 |
| FAQ | −2.133 | 0.118 | 0.004 | 0.865 | 2.374 | <0.001 |
| RAVLT_immediate | 0.398 | 1.489 | 0.102 | −0.175 | 0.341 | <0.001 |
| Hippocampus | 0.773 | 2.166 | 0.001 | −0.38 | 0.684 | 0.009 |
| Fusiform gyrus | 0.136 | 1.146 | 0.521 | −0.579 | 0.561 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Liu, L.; Yang, Z.; Fan, J.; for the Alzheimer’s Disease Neuroimaging Initiative. Predictors of Transition from Mild Cognitive Impairment to Normal Cognition and Dementia. Behav. Sci. 2025, 15, 1552. https://doi.org/10.3390/bs15111552
Gao J, Liu L, Yang Z, Fan J, for the Alzheimer’s Disease Neuroimaging Initiative. Predictors of Transition from Mild Cognitive Impairment to Normal Cognition and Dementia. Behavioral Sciences. 2025; 15(11):1552. https://doi.org/10.3390/bs15111552
Chicago/Turabian StyleGao, Jiage, Lin Liu, Zifeng Yang, Jialing Fan, and for the Alzheimer’s Disease Neuroimaging Initiative. 2025. "Predictors of Transition from Mild Cognitive Impairment to Normal Cognition and Dementia" Behavioral Sciences 15, no. 11: 1552. https://doi.org/10.3390/bs15111552
APA StyleGao, J., Liu, L., Yang, Z., Fan, J., & for the Alzheimer’s Disease Neuroimaging Initiative. (2025). Predictors of Transition from Mild Cognitive Impairment to Normal Cognition and Dementia. Behavioral Sciences, 15(11), 1552. https://doi.org/10.3390/bs15111552
